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Abstract

Sound dispersion in simple fluids is anlyzed applying a generalized hydrody-

namic method for time correlation functions. The effects of shear relaxation on
the sound dispersion are examined for liquid argon and a dilute hard-sphere
gas. In the case of liquid argon, the dispersion predicted by the theory over
quite a wide range of wavenumbers exhibits the combined effects of shear
relaxation and structural correlations. The results for a dilute gas indicate
that that the inclusion of shear relaxation gives a qualitative improvement

of Navier-Stokes theory.
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1. Introduction

The purpose of this work is to discuss the
dispersion of sound velocity?> in liquid argon
and in a dilute gas of hard-spheres. Our att-
ention will be focused on the effects of introd-
ucing the Maxwell (or shear) relaxation mech-
anism into the ordinary linearized hydrody-

namic description. This approach is basically

m

an application of the Martin formalism? of
linear response theory. The present problem
costitutes a related application of basically the
same approach used in Ref. 3-5. Also we will
study the validity of this approach for dilute
fluids. In this context results of the linearized
Burnett equations® and modeled Kkinetic
equation™ will be considered.

In Section 2 we introduce dispersion equa-
tions® and define the various “sound” veloci-
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In Section 3 we
present the results of relaxation theory for
the dispersion behavior in liquid argon and

ties which we can consider.

show that it can cover wavenumber values
ranging from those appropriate to ultrascnics
to those of neutron scattering. We then
examine the applicability of the same theory
to a dilute gas of hard-spheres in . Section 4.
We observe a qualitative improvement of
Navier-Stokes theory by comparison with
Burnett and Kinetic calculations. We will
discuss the more interesting features in our
calculations in Section 5.

2. Dispersion Equations and Sound
Velocities

There are several ways to discuss the
dispersion and the velocity of sound in a
fluid. Among these we will consider the
following; the temporal decay of a spatially
periodic disturbance(free sound waves), the
spatial decay of a disturbance driven at a
definite frequency (forced sound waves), the
frequency shift of light scattered by a fluid
(Brillouin scattering), and the frequency shift
of longitudinal current excitations from mole-
cular dynamics and neutron scattering. The
last technique is an extension of light
scattering to the large r and o region.

- The convenient quantity to describe density
fluctuations in a fluid is the dynamic form
factor S(x,w), which is directly measurable
by light scattering and neutron scattering
éxperiments. We have demonstrated®> that
this quantity can be expressed in terms of the
damping function. We have presented detailed
analyses of correlation functions using- the

damping function derived from the -linearized

hydrodynamic description which includes the

Maxwell relaxation. This approach will be
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referred to as LHM in this work. In the limit
0t<1 this damping function reduces to that
obtained from the usual equations of linearized
hydrodynamics which will be dencted as LH,
¢ being the Maxwellian (or shear) relaxation
time. (See Eq. (9).) We already know that
the Maxwell relaxation time is very important
in the transition region® .. We want to examine
the effects of viscous relaxation in describing
the dispersion of sound.

We now define the dispersion equation® and

several velocities to be discussed. In the case

of free and forced sound wave we look for
solutions to the dispersion equation

‘ G(x.5)=0 (1)
G(x,s) is obtained with explicit
wave—numbef depehdence from S(x, @) which

where

‘is cast into the from

» S_(lc,bw)v=S(Ic)a,(x, o) - o (2)
o(k, @) =-L-ReF(s) /G(s) " (3)

where S(x) is the static structure factor,
and P:(s) and G(s) are polynomials of s, s
being f{w. In the forced sound wave case o is
real and r complex, so we define the sound
velocity as
v,=w/Rex. (4)
Inithe free sound wave case, & is real and
o complex, and the sound velocity may be
defined as
v=Re w/x. (5)
In Brillouin scattering we define the sound
velocity
v,=w,(value of ¢ at the Brillouin peak)/«
We will see that v, is different from v«
whenever . there exists the overlapping of
isobarig¢ entropy fluctuations represented by
the - central heat diffusion peak with the
Brillouin ‘peak corresponding to sound propa-
gation. Strictly speaking, without the over-
lapping v, and v, are still different®>. The
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reason is that o« is determired by Eq. (1), but
v, depends not only on the poles of S (¢, w),
the roots of Eq. (1) but also the strength of
the Brillouin component. As «# increases, the
width of the Brillouin component also increases
and eventually the Brillouin peak disappears.
If we still want to discuss sound dispersion in
this situation, we have to define another
sound velocity as
V1= (@01 mex/& %)
where (wi)msx is the frequency at which
the power spectrum of the longitudinal current
correlation function, which is proportional to
? S(x,0), shows a peak. This frequency has
been observed in molecular dynamics and ine~
Jastic neutron scattering experiments from
liquids and has been interpreted as an elemen-
tary excitation frequency of longitudinal modes
in liquids. The shift of this frequency as a
function of wave-number may be interpreted
as showing the dispersion of longitudinal
modes. In the same spirit we may discuss the
dispersion of sound velocity defined by Eq.
(7). This velocity is the only meaningful one
for the transition region and can be extended
to the hydrodynamic region of » and w. We
then expect that {w,) =as is very close to w,
but is shifted toward slightly higher frequency.
We can easily show that the dispersion equa~
ions for LH and LHM are

LH: sttotet/r " 1ZUD0E Lo e (g)
LHM:s?4v2/r
s(1—=1/r)v2%%  sbx®
+"—§:le}2—— 1tss =0 {9)

where v, is the ordinary adiabatic sound
velocity, r the ratio of specific heats,
a=1/mnC,, 2 being the heat conductivity, m
the atomic mass, # the number density, and
'C, the specific heat at constant volume,
b,=4y,/3mn, 7, being the shear viscosity, and

< the shear relaxation time. Here we may
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generalize Eqs. (8) and (9) by making all the
quantities dependent on « according to the
prescriptions used in Ref. 3. This has to be
done for liquids®, but is not necessary for
dilute gases. We will discuss separately the
scund dispersion in liquid argon and a dilute
gas in the next sections. In both cases it is
important to realize that the maximum dispe-
rsion. predicted by LHM occurs when w7 or
ver is of order unity. Cf course » can be any
of those defined in this section. As ancther
remark, we note that the dispersion equation
will include additional relaxation terms in the

case of polyatomic fluids.

3. Dispersion in Liquid Argon

We will not consider the LH results for
liquid argon, since we already know that LH
fails-in the large 5 and o region. We do not
consider the forced sound wave case, since
ultrasonic measurements do not indicate any
dispersion of sound in liquid argon.

In the free sound wave case, we have to
solve Eq. (9) with x real and o¢=-7s complex.
We cannot solve this equation analytically,
because it is a sixth order eguation in ». We

have found that the approximate velocity v,

given by
0.2(r) =22 (rc) [va(/c)xr(/c)lzlv 2(x) 0,2 (k)]
. 1+ (0. (#) ez (8) J2
+ <1—1/r>w<x>[v (W) g

(w.{r)re\£) 2+ (ax?)?
is very close to the v, obtained numbrically
from the Brillouin peak in S(x,w). Notice
that this equation is obtained from the real
part of Eq. (9) by setting o,(¢)=Rew/r. In
actual calculations we

have . ignored ‘ex?

compared with »,(x)rr(¥), which is not quite
correct when s~1A"1. Here all the quantities
are x-dependent. The quantities in Eq. (10)

are given below®.
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Fig.1. Dispersion of various velocities in liguid argon at 76°K and
1.407g/cm® as a function of wavenumber.

0,2(x) =7/pmS(x)
v.2(s) =[4G.(¥)/3+K.(x)]/mn
t72(k)=(8/3) (0.2 (x)—0,2(¥) —1/pm]Is?

+rﬂg)—(8/ 3) (0.2 (k) —02 (k) —2/Bm]x?
1+(x/5.)?

(1D
(12)

(13)
7 (x=0)=[0.%0)—0.,%(0)Jmn/(49./3+n),

x.=1.54"1 (14)
where G.(x) and K_(x) are high fre-
quency shear and bulk moduli, g is the
inverse temperature in energy units, and g,
is the bulk viscosity. We recall that Eq. (13)
is the interpolation formula of Akcasu and
Daniels!® for the relaxation time. We can
calculate o,(x) for 5>.5X10%cm™ with the
S(«) taken from Rahman’s work!>. For the
values of #<(.5X10%m™ we use a smooth in-
terpolation between S(x) at ~=.5 10%cm™! and
S(0) obtained from the measured »,(0)12.
For #>.5X105cm™ v_(x) is already available
from Rahman'® and our calculation® using
the pair distribution function from Verlet!®
and the Lennard-Jones potential. For smaller
values of ¢ we use the small » expansion of
the molecular expression for ».%(x) and take
v.2(0) and the first order term. There is no

computational problem in eveluation ¢.2(0).
By checking the values of ».2(x) for x of the
order of 10’cm™ as calculated from the exact
expression and those from the expansion
mathod, we have found the expansion method
to be reliable for small values of . At very

Fig.2. Dispersion of 11, and v, in liquid argon
in the transition region.
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small = values we encountered computational
difficulty using the exact molecular expression.
Detailed expressions for the expansion method
are given in Appendix A.

In Fig. 1 we show the variation of various
velocities with number from 10° to 4x 10%cm™1.
We have found no dispersion in any of the
velocities up to 10%cm™!. We see two regions
of » which show intersting characteristics. The
first region is between 10° and .4X10°%cm™,
where the dispersion due to the shear relaxa-
tion can be as much as ~36%. The second
region is from .4Xx10% to 4X10°%cm™ where
even more significant variations of the veloci-
ties are apparent. In comparison to the mon-
tonic positive dispersion in the first region we
We in-
terpret this as arising from the combined
effects of the shear relaxation and the struc-
tural or spatial correlations among argon
atoms. The latter effect is represented by the
s~dependence in Eqgs. (11) to(13). These results

now see a sharp negative dispersion.

indicate that structural effects dominate in the
region.

In Fig. 2 we show a magnified picture of
Fig. 1 for the 10%cm™! region. We include the
experimental results for v (x) obtained from
computer molecular dynamics experiments'?
(solid circles) and neutron scattering(crosses
for the data of Skold and Larsson!®’ and bars
for those of Chen ef ¢l.'5. In the case of
is obtained by
drawing a smooth curve through Rahman’s
data. The agreement between v,(sx) from
LHM and those from experiments is similar
to that observed in Ref. 3. We also note that

molecular dynamics o, (s)

the approximate velocity is not very different
from the other velocities. As is shown in Eq.
(10), it is easy to see that wv,(x)
v,(x) when & is very small and "approaches to
v.(x) as x increases.

becomes

However, »,(x) cannot
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be v_(x) because of the ax? term in Eq. (10)..

A number of other features are observable:
from these figures. None of the velocities.
approaches v_(x) in the regions considered. It.
is not surprising to see that »,(x) cannot be:
defined for = >5x10%cm™.
to v (x) and all the velocities lie between

v,(x) is very close:

v,(x) and v_(x) over the entire range of «. If
we consider »(x) /v,(x)—1 as giving the sign
of the dispersion, every velocity shows:
positive dispersion. Notice that here we:
have included the
through S(x) which

variation over the entire range of «.

s—dependence in wv,(x)

shows a significant
In the
ultrasonic region this velocity is considered
as a constant which corresponds to v,(x=0) in
our definition. As a final note, it is unfor-
tunate that there is no experimental measure-
ment in the first » region. At the present.
time neither light scattering whose maxium
accessible « value is about 2A~! nor neutron
scattering whose minimum accessible = value:
is about. 5A-! can be used to test the predic-
tion shown in the first » region. However, we
have found that the maximum dispersion
occurs when @z or v(x) sr is about unity. In
liquid argon this occurs at s~.4X10%m™.
This means that shear relaxation is respon-
sible for the dispersion. Due to the samall
value of the relaxation time (10 sec.) the
range of « exhibiting the dispersion lies beyond
that accessible by light scattering. On the
other hand, in liquids like glycerine with
large < it is possible to observe the dispersion
by light scattering technique.

4. Dispersion in a Dilute Gas
Recalling that the condition of wvkr=1 is

critical for observing the dspersion and that in
a gas v does not differ much from » in liquid
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state, we expect that the range of « can fall
in the light scattering region by making <
large enough. This can be realized in a gas,
since r is inversely proportional to the density
of the gas. This idea has led us to consider
the dispersion of sound in a dilute gas'®. We
also want to know what shear relaxation in
LHM can do to the results of LH which are
known to be incapable of predicting of sound
dispersion in the kinetic regime!™!® .

Table 1. Dispersion Coefficients for
“LH”, “LB”, and “LHM"
c. | Co | e
141 _ 55 1550
LH |+ 7 72 432
215 | 19_ 6217 2 4203
LB |+ 75 | T72 10368 ua) 432
141 ﬁ 960717¢ 7 _ 3559
LHM | + 79 i e (L) 132

We choose a gas composed of hard-sphere
molecules, since all the quantities sppearing
in the expression of S(x, @) are simple,

7=5/3 (15)
v,2=5/3pm (16)
».=G._r=nr/B (17)
a=59./2mn (18)
v.2=3/pm (19)
2=(K_—K,)r=0 (20)

Notice that Eq. (18) gives the Euken cons-
‘tant as 5/2. We show in Appendix A that
Egs. (16), (17), (18) and (19) are the dilute
gas limits of the r-dependent quantities for
hard-sphere molecules. It is known that the
‘Euken constant is nearly equal to 5/2 for a
wide class of intermolecular potentials and the
experimental values for noble gases are very
close to 5/2. It is also well known that this
constant for Maxwell molecules is 5/2. The~
refore the results of LH'” to be discussed are
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the same for hard-sphere and Maxwell mole~
culés. The results of the linearized Burnett
equations (LB) are worked out for Maxwell
molecules®” . We will compare the results
of these theories with those of the modeled
kinetic equations of Sugawara and Yip for
hardsphere molecules™.

First we examine the dispersion for small
and . The LH results for v,,o: and « are
known!'”, a being the absorption coefficient,
and are given in Table 1. There we define
the “dispersion coefficients”,

Cw'=(v,c/v,,—i)(1).,2/77’co)2 - (21)
Co=(v./v.~1) (v,2/7'k)? (22)
Co=va/p' 0*—7/6) (v.2/7'w)? (23)

where 3’ =7,/mn. The LB results for Maxwell
molecules are also listed in Table 1.
For LHM we recall Eq. (9) in the form
o' ~7(z74-30,%%c/2) 03 —330, %202/ 10
+i(0.26%0714-210, %42 /10) w+80,%4/10=0
. (24)
By putting
w=v,ﬂ(1+aﬁ+ﬁﬁz+ ......... )
or putting

— ;’ (1tawtbopt—i-eeeee- )

and determining the coefficients by equating

equal powers of x or @, we find the results

of LHM,
_ 389 7'k \2, . 7943
0= voic[ 27,7//600—!— 0.2 )-1-2—2—16—
VAR 960717 NAUAS .
2, = 56 (5 )+ @
2
[1 Ty’ w /60— 21 vz
3559 2 ,
472 432 1)2 ...... } \26)
We then obtain from Eq. (25)
2
(Uw)LHM—Ua[1+ 389 7700" )
960717/ 7'x \* o
T 576 \ o, )] (27)

and from Eq. (26)
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Fig. 3. Dispersion and absorption of forced
sound waves in a dilute hard-sphere
gas.

4 2
(o= 14+ (22~ ] (28)
"w? 3559 T \? .
(a)ram= ”pog" [%_‘ 432 *%;?“)] (29)

These are included in Table 1. We see that
the first-order sound dispersion for free and
sound waves in LHM is different but positive
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in both cases. However, the coefficients C.,.
and C, are different from those in LB which
We
shown that LHM gives the correct sign but

are known to be correct®. thus have
not the magnitude of dispersion.

We next examine the exact results of LH
and LHM which are obtained numerically
from each dispersion equation and S(x, ). It
is convenient in the forced sound wave case
to define!®

r=p/wy; (30)
where p is the pressure and

R=x/x, (31)
Here r is complex and &, real, defined by

Ir.,=a)/v,,. (32)*

From the equation of state for a dilute gas,
p=n/p and Eq. (17) we show that

r=1/wz. (33)
In terms of these parameters the dispersion
in the forced sound wave case becomes

LH: R*(9¢/10r—6/57%) — R¥(1+23¢/10r)-+1=0

(34)

LHM: RY(7/r—3¢)+R*(10r—15/r
+337)/3—10(r+7)/3=0 (35)
We then solve these equations for K. The

I v }
{ \ !
| \ . i
2 ' O (el
| -
| RPRAISYZE & (vamamgs
. \\\/(%/%}erm‘ O exp
T - B v
b— ~ . AN
\ ~ AY
AR \
PR ~ N
BTN S AN
t.O- T ISl = == e
/"-’
o =5 °
o — ’///"
(VT .
I
!
i
s
g
E L (I
N

Fig.4. Dispersion of v, and vy, in a dilute hard-sphere

gas as a function of y.
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Teal part of the solution is the ratio of veloci-
ties, v,/v,, and the imaginary part of R is
a/x,.

In Fig. 3 we compare three hydrodynamic
calculations(LH, LHM and LB) of v,/v, and
a/x, with the Greenspan’s experiment!?? in
helium gas. We see in the comparison of »,/v4

J. Korean Nuclear Society Vol. 6, No. 3, Sept 1974

that LHM gives an overestimate. Though their
first order terms are the same as shown in
Table 1, the exact results for LH and LHM
are different. In LHM v,/v,
asymptotic value of +/5/7 as r goes to zero,
which can be easily shown from Eq. (35). On
the other hand, »,/v, approaches zero in LH

approaches the

| () y= 3.23(y* =3.47)

() y=216(y*=2.50)

Fig. 5. Spectra of density fluctunations, S(x,w), in a

dilute hard-sphere gas.
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:and LB. The comparison of a/x, shows that
LHM underestimates a/x, for r=<3, LH over-
-estimates it for <4, and LB begins to un-
-derestimate it at »~3. We may explain the
-overcorrection of LHM in comparison with
LH noticing that in LHM the shear viscosity
‘term in « is, roughly speaking, proportinal

t0 %./(1+w??). Since this factor is simply 7,
in LH, LHM underestimates the viscosity
-effect by the factor of (1+4%?)"%. The fact
that LHM does not give a good agreement
with the experiment for 7<1 suggests that
the Lorentzian frequency dependence in the
damping function is not adequate for that
region: Since very small » corresponds to
rarefied gas state, the frequency dependence
obtained from an ideal gas is expected to give
better result. We note that LHM does not take
into account properly the streaming of the
molecules which plays more important role
than the collision among them. This will also
has some bearing on the underestimate of
v,/ve by LHM.

We cannot solve Egs. (8) and (9) analyti-
cally for the free sound wave case. However,
it is possible to calculdte v, and 2 numeri-
cally, as was done for liquid argon in Section
3. It is covenient to express S(x, @) in terms
of x and y defined by

x=w/0% (36)
y=1/v.x7 (37)
The result for LHM is
S(x,¥)={(ar0,6)™" F(x,9)/G(x,9) (38)
where
F(x,5)=[x*4y/5-+3/5y)+9/5v-+3y/5]
(2432 (x24-9/4y7%) (39)

G(x,y) =[x+ (y*+9/4y*—9/5)
+x2(—y*—9/4—63/20y%) —27/20]?
+x2(x*(4y/5+3/5y)+9/5y+3y/5)* (40)

In Fig. 4 we compare v,/v, and v,/v;,, in

LH and LHM with a few points from the
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kinetic results of Sugawara and Yip? as func-
tion of y. In view of the excellent agreement
(KE) with the ex-
periment of Greytak and Benedek?”, the
point at y¥*=1.79 [see (41)] can be regarded
as an experimental result. For LHM we have
included the x-dependence in the relaxation
time which leads to an effective y* defined by

y*=y[z(0)/7(x)] (41)
where ¢(x) is given by Eq. (14). We see
that LH gives v, and v, of negative disper-

of the kinetic results

sion and LHM and KE are in agreement,
both giving v, and .. of opposite sign. This
opposite sign can be explained from simple
geometrical consideration of the peaks of
S(r, 0) and 0?XS(x @) with a fixed value of
v,. In Fig. 5 we present the comparison of
Sk, @) or S(x,y) from LH and LHM with
that from KE™ at four values of y*. We see
clear improvement of LHM over LH at all
values of y*. Even at y¥=3.473 at which LH
is supposed to be good, LHM gives better
result than LH. At y¥=1.79 and 1.27 we see
the failure of LHM at which we have to use
more complicated frequency dependence of the
damping function, as pointed out earlier.

5. Discussion

In this work we have examined the disper-
sion of sound in simple fluids like liquid
argon and in a dilute gas of hard-sphere
molecules. Specifically, we have compared
the results of the linearized hydrodynamics
plus relaxation theory with those of the
ordinary hydrodynamics (Navier-Stokes), Bu-
rnett, and kinetic theories. We have shown
that in most cases LHM gives better results
than LH. This might be expected from the
success of LHM in analyzing various cor-

relation functions as demonstrated in Ref.
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3-5. We see the simplicity and utility of the
Martin formalism of linear response theory
in discussing the dispersion of sound in terms
of the damping function. The simple frequency
dependence of the damping function assumed
in LHM is not sufficient to deal with a very
dilute gas. One reason is that it still does not
treat properly the streaming of the molecules.

In liquid argon calculations we have demons-
trated that our LHM with the rs-dependence
used in Ref. 3-5 provides us with a theory
which is capable of treating the sound disper-
sion consistently through a wide range of «.
This extends from the region of interest in
the ultrasonic measurements to that in the
neutron scattering and molecular dynamics
experiments. We defined a velocity ;. which
is useful in the large # and w region, as long
as the frequency wavenumber relation in that
region is well defined. We also demonstated
that the values of » where wvsr=1 lie in the
region between light scattering and neutron
scattering measurements. Recalling that the
s-dependent relaxation time gives better results
in analyzing the correlation functions of
liquids, we hope that careful measurement
of the sound dispersion may provide one with
a method to determine this £ —dependence. LM
H predicted the maximum dispersion of~35%
using the relaxation time of the Akcasu and
Daniels prescription in the x region where the
In the
region of #=.5X10°%cm™ we have seen the
structural correlation effect overwhelms the
shear relaxation effect and the theoretical
velocities are in good agreement with those
estimated from the molecular dynamics and
In all these
calculations the s-dependence in the elastic

shear relaxation effect is dominant.

inelastic neutron scattering data.

moduli, »,(x), and z(x¥) play an important
role in liquid. On the other hand, the -

J. Korean Nuclear Society Vol. 6, No. 3, Sept 1974

dependence has little effect in a dilute gas.

Without such #-dependence we have shown
that the dispersion of sound in a dilute gas of
hard-spheres can be examined by the same
approach as in liquid argon. We have seen
the superiority of LHM over LH in giving the
correct sign of the dispersion and in com-
parison with the kinetic theory of Sugawara
and Yip. In the forced sound wave case LHM
underestimates the observed v, and the
absorption coefficient in the rarefied gas
region. The comparison with the kinetic
theory at the kinetic region of & indicates.
that the damping function with a Lorentzian
frequency dependence is not appropriate in
treating the streaming of the gas molecules.
It is possible that LHM will provide us with
a tractable and reasonably accurate theory
for dealing with dense gases. For a dense
gas of hardsphere molecules the r-dependence:
in v,(x), v.(x), and G_(x) may be estimated
by the results given in Appendix A. It will
be of interest to apply s-dependent quantities.
to sound dispersion measurements in a dense.
gas.

Appendix A
Sum-Rules in a Dilute Gas of Hard-spheres

Using hard-sphere potential, Percus Yevick
equation for ¢(7) vs- g(r)®, and the as-
sumption g,(r)=e #2582 we can derive the
following sum-rules and the structure factor
in a dilute gas of hard-spheres:

(/62w () > =22

(34—

~I—C{ — siny——é%}” (A1)

18
ys—

(mn/ltz)(w:z(ft»:‘Z“
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~ S Bl (- o)
T Yo )
Stey= {12 { Aoy 4-502

—i—B[——cos y(lw—")‘? )—i——?«(sin y—~yl—~>]

+C[cosy( 1+ yzz —%;i

(A 2)

4dsiny 24
+ A5 (1 )+ SN (A 3)
where y=or, 77*-»7ma3/6
A=— (1+29*)3 6?*(1-}-7]*/2)2
= (1_7)*)4 > (1— 77*)4
¥ (1+29%)% : .
and C= o(1—7*)¢ * © being the diameter

of a hard-sphere. We may expand these

expressions for small » using
sinx=x—x3/31+x%/5!—&7/T1-veeeeeee
cosx=1—x%/21+x*/4!1—x5/6!f-errereer

The results are

(mn/52)w (5 ) y=5% (mn/5?) w2 ()

+(3n7*/35p)y*(B/9-+13C/8) (A 3)
(mn/52)<w 2 (k) > =5 (mn/5* ) (k)
+(3n7*/358)y*(B/3+C) (A 5)

where the x—0 limits**> can be calculated
exactly and are given by

= (mn/k2)<w (k)
=(n/8)[3—89*/5(B/4+2C)] (A 6)
52 () 2) w2 (£)>=(n/B) [1—45*/5(B+3C)]

(A7)
Similary we can show that

ling(x)= [1_24,7*(A/3+B/4—190/30>]_1
(A 8)

We can also show that the small » expansions
of (mn/s*}w(&)) and (mn/r*){w (x))27
lead to

(mn/5) <ot (R)y =% P27~ Cw(x))
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e (~ 1.d% 1 d¢
o1 Odrrﬁgz(”(? dr? + 5r dr
(A9

(mn/x2)<wxz(x)>“’;'::,——<w:2(x)>

N R

42 S drr | 5r dr
(A 10)
where
B o)y =0
(ZnnZ/S)S drr“gz<r>( d,z ,2  a )
(A 11)
ey 2(k)>=y/8
+(21m2/15)5 drgi(r) - (r"92) (A 12)
Notice that we have used Egs. (A9) and

(A 10) to compute {w2{x)> and <{w?(x)> for
s < 1AL
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