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Abstract

The linear sequence method is expanded in such a way that it may be applied

to the boundary problem with non terminal state condition and its possibility

under the existence of a corresponding costate vector P*(¢) is found. For an

application a couple of the concrete physical models are illuslrated and examined

the effect of the sequence.
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1. Introduction

One of the powerful means of obtaining the
optimal condition in optimal design and the
optimal control function in optimal control is
Pontryagin’s maximum principle. To utilize

this principle, however, one must solve the
two point boundary value problem. Various
approaches toward solving the problem have
been introduced by many people!™. The
author, too, has designed an approach which
is capable of finding the optimal control
function #*(¢) by obtaining the optimal costate

initial condition vector =* through the sequence
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method®. In the cases studied, all the terminal
conditions were fixed. The boundary problem
with non teriminal state conditions which the
author is going to introduce was not widely
discussed in these papers.

In this paper the author has attempted to
expand the optimal theory pertaining to the
linear model, which he had introduced in an
ealier paper®, so that the theory may deal
with the linear boundary problem with no
The author has
found that the new method is capable of

terminal state conditions.

golving the problem under an assumption which
the corresponding costate vector P*(¥) exists.
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In section 2, the problem is analyzed theo-
reticaly. The adaptation of the sequence
method for obtaing the optimal control is
introduced in section 3, and its connections
with previous results are pointed out. In section
4, the condition for convergence of the sequ-
ence is investigated. The physical significance
of the problem is analyzed in section 5, while
section 6 supplies a couple of illustrative
examples as an application. Finally section 7

is left for conclusion.
2. Theoretical Analysis

The linear fixed time invariant system to
the state with non torminal boundary condi-
tions is examined. The theoretical analysis of
the optimal control method for the problem is
developed in such a way that the problem is
reduced to a two-point boundary value pro-
blem, changed to integral form, replaced by a
sequence of appoximate integral equations,
and made ready for the numerical solution by
the application of the sequence method®.

We shall consider a system which is described
by the following differential equation.

a. The state space approach to continuous
linear control problems begins by writing the
system equation in the usual way, as

¥(@)=Ax(@)+bu(®) €]
where A, b are constant matrices having
dimensions n x n and n x r, respectively. Then
the vector x(¢) is the state and the r vector
u#(?) is the control.
b. A fixed time interval
e[ 0, ti] @
¢, Initial and terminal boundary conditions
on the state vector

x(0)=¢§
x(t)=free )
d. The control variable must satisfy a
constraint
(=<} for all telo, ] )

e. The cost functional is

Jaw={"uwiat (5
Then, it is desired to find a control variable
#*(t) that

a. Satisfies the constraint (4)

b. Transfers the system (1) from the initial
state at time {=0 to the uncertain terminal
state at time ¢=1,

¢. Minimizes the cost functional (5)

The relations deduced by applying Pontrya-
gin’s minimum principle to the problem are
summarized below.

Definition 1; The “deadzone” function, dez
[—3J, is defined as follows;

u()=dez (w(D)] )
when w() >1
w()=0 whenlw(|<1
u(®)=—1 when w() <{—1.
Let H(x,u, p,t) denote the real-valued function
and the

means (=1

of the # vector x, the n vector p,
m vector u given by
H(x,u,p,8,)=L(x,u,t,)+1{p, f(x,u, )}

where f(x,u,t) is the function which determ-
ines the system and L(x,x,?) is the intergrand
of cost functional. H(x,u,p,t) is called the
Hamiltonian function of the problem and that
D is a costate vector.

Let #*(?), telo,t,] be the optimal control,
the solution of problem assuming that one
exists. Let x*(?) be the resulting state on the
optimal trajactory. In order that #*(¢) be
optimal, it is necessary that there exist a
corresponding costate vector. Let P*(¢) telo, 1]
be the corresponding costate vector.

Then,
relations such that;

the minimum principle yields the

a. Hamiltonian function
H(x*u*, p*, 1)
= u* O +p* O Ax* (O +p* Dbu* (@) (7D
b. P*(®) corresponds to #*(#) and x*(?), so
that P*(?) and x*(f) are a eolution of the
canonical system (differential equation).

*(0) =35 = Aa* O+ bur(t) @®
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Pr)=- gﬁ{ =—A'p*@®) )

where A’ is the transpose of A.
c. Satisfying the boundary conditions
x*(0)=§
x*(1) ¢ free 10
d. The function H(x*, «*, p*, ¢) has an
absolute minimum as a function of # over Q
at u=u*@) for in [o,#]; that is,

min H(x*, u, p*, ) = H(x*, u*, p*, 1)
17729

or, equivalently

H(x*, u*, p*, O <H(x*,u, p*,®) for all u ind
and the optimal control #*(?) which absolutely
minimizes the Hamiltonian for all # such that
lul=<1 is given by

w*(Q)=—dez [b' P*(D] an
from above Eqgs. (8)~(11), determination of
#*, the optimal costate initial condition vector,
will be considered equivalent to the solution
of the two point boundary value problem.

If any of the state variables are not fixed
at the given final time, then the corresponding
costate variable is fixed at time ¢=f, as a
consequence of Pontryagin’s maXimum prin-
ciple!®. This reduces the number of variable
to be found. Let the first » components of
the state vector be fixed at time =7 and
define the » vector

61
g; = (12)

Define the costate final condition vector =z,
and partition it.

i

Ty =S| eeeee (13)

Ly
where =, is now the known final boundary
The costate
boundary condition on x; is given in general

condition on the costate®!®,

form by
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o= aJ(x, u, )
9x,( P
where
Xr41
X =
X,

Also, the foundamental matrix must be par-
titioned
eii | eq

eAf —freeres g ......

€iiien’,

Note: in each of these definitions it is under-
stood that

|<j<r and r+1=<I=<n.
First write the solution of Eq. (9)

P*(@)=e™4't z* where n*=P*(0),
Define for convenience

gi)=e™4* b 14

Then, the vector g(?) is changed to account

for the final costate vector =,-Let

gr(=e 401 p=e4 q(t) (15)
and
q;(t)
@B =| v
q:(t) .

Then the optimal control function (11) becomes
w*(@®)=—dez(b'e"4"'q’ Wn,)
=—dez[q' /(D]
=—dez{¢';(Omi+q"(O=]. (16
The solution for the state Eq. (8) is
@ =er(8—{'g( dealq’ (0%248) (A7)
and the operator T(x;) is now defined on the
space R,
T(n;)=—0;+Les; : eir)
6§ adentq s On+eOmIan) (18)

3. Approach for Controllability.

A sequence of approximate operator | T»(z;)}
is now introduced to replace the operator
T(z;). The idea is to start with a very simple
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operator and to work up by step toward the
exact operator T(x;). By doing this properly,
the sequence method can be guaranteed to
coverge at each step, so that a workable com-
putational approach results. Two approximat-
ions will be considered. One is a linear term
to get the computations started sucessfully,
and the other is a sequence of smooth function
Ui(-) with parameter »,(k=0, 1) as p—
oo, U,(+)—u*(-), so the idea is to start with
then to drive the
linear part to zero and increase 7. so that the
approximate control U:(:) converges to the
optimal control #*(-) when the optimal control
u*(q'/($)ns) is replaced by #;, the form of the
argument gr(Oz, will be

a linear approximation,

optimal control
retained.

Now a linear one for the simplest useful
control will be started.

Change 1; First apply a linear control! using
the control largument g’ ()=, yields

uo(q' D) =avq’ s (Oxs

Inserting this control into the differential Eq.
(1) and applying the given boundary condition
leads to the zeroth approximate operator

Tv(m)=¢§ —sfq "®avq’ (O nsdt.
Let Wy(T) be the controllability matrix
WAT) = | a@a' st (19

Then Tolrn)=8—ac W, (T)xs.

For approximation of the optimal control
function, the exponential form #;(-) can be
brought in by a scalar approximation factor
7+ The deadzone function can also be appro-
ximated as closely as desired by an analytic
function, since the points of discontinuity are
excluded.

Change 2; Introduced an approximate control
function #,(-), using the control argument
q’ (O, yields

ULa’ 1) 79) = {tan Alna(a’ /(D))

+tankl7:(q' (O~ 1]} (20

The general deadzone function can be replaced
by an approximate function #; and the cor-
responding approximate operator T.(z;) from
the above changes,

Ti(n)=—6;+[ei; } €; )6 —ar W(T)zs

—fawumta' wman. @D

Let the sequence of approximate operator
have % steps

0yl pgeeseereseres Lpar<loo
Qo >rerereeeeens Sapl an>=an=0 @2
where k:<k;.

Definitition 2; Applied sequentially means
the solution vector =;-1 of the previous operator
Ti-1(z;) is used as a starting vector for sequ-
ence method on the present operator T)(z;).

Properties of the sequence are briefly listed
here according to the analytical result.

1. A sequence can be found such that
sequence method converges when applied to
each member sequentially.

2. Under suitable restriction this sequence
of operator converges to exact operator 7(x,).

3. The solution to the approximate operators
leads to sub-optimal control which use only a
little more fuel than the optimal control, yet
do not require the instantaneous switching of
the optimal control.

Definition 3; Assume the solution vector z;
of the operator Ty(x;) has been found. Now
make changes 47 and da in parameters 7 and
a to form a new operator T,;:.. Applying
sequence method to T'i1 sequentially. The set
of all changes 4y and da such that sequence
method converges is called the region of
convergence about 7, and a; in the parameter
space. There is a corresponding region of
convergence in the space zr of solution vectors.
The region of convergence soon includes the
exact solution vector =;.

The sequence method is to be applied to a
typical operator T,(z;). Given the operator
Eq.(21) to find the solution vector x; such that:



218 J. Korean Nuclear Society Vol.5, No.3, September, 1973

Ty(z;)=0. 23
One linearizes about the current guess z'

Ti(r))=~Ty(z}) + (m;—=x) T, P (=),
Then the next iteration is found by solving
the linear equation for =, and the recursion
relation of the sequence method is

aiF =g — (T, D ()1 Tu(al). @8
Since 7T, has a vector valued in the range
space, its first derivative operator isanr x r
matrix

Ty () =—"Les; : exllas W,(T)

+{ e Dule (O

+q’(OrJdt). (25)
Then Eq. (23) can be written out entirely in
matrix notation by substituting Eqs. (18), (21)
and (25).

mit=ri—( ey | exller] 4(DQ' (Dt
+§ a0 ® (¢ O+ Dm0
(=0t lei enlE—a) gD (Dt

~{ e ta’ r2a0). @26

From Eq.(19),
approximate control function #,‘? is

O (g’ /(Dms]

=%m{z—tanhztm(q’/(t>n,+1)]

—tanh*(n.(q’ (D7~} @D
Starting with an initial guess and assuming

the first derivative of the

#imon3! at the same step #, the repeated
application of the Eq. (20) gives the result that
the inner loop is said to have converged and
the vector z° is defined to be the solution
vector =; of the operator T,

If none of the state variables is fixed at the
then a complete set of
Under
these conditions this problem has a closed form

terminal time i,
costate final condition is available.

solution. Let the final condition on the costate
be P()=n; Then the costate is P@)=
e~ 4’ (t"t0 g, and the optimal control is

uw* () =—dezlg' ®eATn ) =—dezlg [ (Dns),

28)
and the state is
x()=e4(§
—S:qa)deZEQ’(t)e"’Tnf]]dz‘. (29)

4. Condition for Convergence.

The sufficient conditions for convergence of
this method and the proof are introduced by
an ealier paper®. The purpose of this section
is to apply the sufficient condition to the
approximate operator Tu(z;) of Eq.(20) and
to write out the required expression.

The first derivatives of 7.(z;) is given as
Eq. (23). Here the task is to evaluate or bound
certain norms.

Let

Ta=(THEII™, (300

’ then

A norm=||Ty1 Tana(z)l|
B norm=||Iwu+ TR (=)
are the required norms. B norm is to be
evaluated over all possible vector z; belonging
to the # dimenional vector space.
Using the definition of operator T, its
derivatives lead to the expanded formulas

Tin=—[~leii i eidlarnWAT)
+§ a0 u?
(' (Dx+q (D7 )de] ]~ 3D
There remains the problem of searching over
the space of cost initial condition vectors for
the one which yields the largest value of the
norm. Actually it is only necessary to search
in a sphere around z,, but the radius of this
sphere is not known before hand,
If the argument of (80) is a vector S,
A norn=||S;||
O11e can use
A nerm=max Si|. 32

For B norm, a third order tensor must be
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handled.
norm is of the form Sij

In this case, the argument of the

B norm=\[Sii!|,
B norm can be bounded by the expression
B norm=max; 7 {Sixl. 33

:
Kantorvich’s theorem'® then guarantees con-

vergence of the sequence method if
h=A norm-B norm<—‘,la— &Y

Then it is necessary that this information will
be used in design the sequence of approximate
operators.

5. Discussion on its Physical Characte-

ristic.

The prime objectives of this section is to
clarify the physical significance of the problem
of this type and to envisage the relationship
previously developed. Regarding this kind of
problem the type of the following equations
can be formulated.

a. Let’s consider the state equation as

follows;
x=F(x, u) (35)
b. A fixed time interval
te[0, T7 (36)
c. Initial boundary condition
x(0)=¢ @3n
d. The control variable must statisfy a
constraint
()| <C for all te[0, T) (38)
¢. The cost function is
Ja={ "1 wat. (39)

Then, it is desired to find a control variable
#*(t) that satisfies the constraint and mini-
mizes the cost function.

Using the penalty function technique as a
treatment of constraints® 131619 which does
not depend on the final state vector X,(7T),
yield m=Q(0: zero element). If none of the
state variables are fixed at the terminal time
T, then a complete set of costate final con-

dition is variable. Under these conditions, the
problem has a closed form solution. Let the
final condition on the costate be

P(D ==y 40
Now we consider how the state end point will
be determined from the geometrical point of
view. In the #+1 dimensional space hyper-
plane group with parameter 4 is given by

féob;xs(T)zdi, (1'21,-2""{21,2“') (41>

As we can see in Fig. 1, the hyperplane group

_ is paralleded each other and meets at right

angles at the position 4;/||4]] in the direction
(bo, b1, bz, =+ b,) from the zero point.

A\

x2

%mall d

Fig. 1. Hyperplane group

When the allowable control is operated on
a process at the initial condition &, ¢ seconds,
the state points shape a kind of set, that is,
maximum isochronal surface. This is a closed
curved surface with parameter ¢ in 241
dimensional space and given by

C(x)=t. (42

On the maximum isochronal surface the
allowable control that can reach a desirable
Now let it be
the maximum isochronal

point is found to be only one.
the equal of T,
surface C(x)="T is decided as may be observed
from Fig.2. There are two that come in
contact with the maximum isochronal surface.
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H)'/)er P/ane c/ine>y

Fig. 2. Terminal end point

If taking the smaller side of d, P is choosed
as the contacted point, this P is the terminal
state of x(7T).

The optimal trajactory is the locus through
P from the initial condition in the contacted
point of two maXimum isochronal surface and
the optimal control of this problem is to
operate the state point not to derail on the

x2

C'iX)=T-t

Fig. 3. State point in free time

{x2

C(x)=1-1
C'(x)=T- t-dt

Fig. 4. Transient of state point

optimal trajactory as in Fig. 3. Fig. 4 shows
both the maximum isochronal surface and the
contacted point in time £ In time #+4d¢ two
maximum isochronal surfaces are given by

C(x)=t+dt

C'(x)=T—t—dt, 43
and then another contacted point @’ comes
about on the curved surface C’ (x) and the
state point comes to move from @ to @/ within
dt. According to a free control besides the
domain of the allowable limitation, the state
point exists in the inside of C(x)=t¢+d¢, such
control #*(¢) is to be the optimal control in

time f. Then the following relations are
obtained:

axof°+ e = ax f 1 (44)
Now time variant of ic—- happend with the

transient of the state pomt through the optimal
trajactory is

_‘< ) axlax Trar 0t +axaxf (45

Besides, partial derivatives of Eq. (44) with
x; is

C _, °C . .. 2’C
2%00%1 fot axlaxl fit ax,.ax, FTE TR
__0C df .. _ 3C of,
%0 0% 0%, 0x (46)

generally, the following form yields
dt (ax. )_

According to maximum principle

$C ofi o
i= Oax; 8x (l 0 1 2 )
Un

p——z P 1), (1=0,1,2, -, m). (48)

Then, the following relation from above rela-
tions yields
ac

oC
2%o f °+ ax,, f
=H(x,u, D, t, 1=1. (49
which denotes that the optimal control is to

fl+ ......

make Hamiltonian H be maximum, this rela-
tions were pointed out by ICHIKAWA1®,
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6. Application

The purpose was to examine the effect of
the sequence. Some of the more enlightening
computer results in some physical models are
enumerated.

Example 1. Double exponential plant. This
plant has two real poles, one of them unstable.

20 ) e

3
z*=[ | J M=100

M is the mode of operation.

This costate initial condition was choosen to
give a control history of —1, 0, —1. The
sequence of vector in Fig. 5 converged nicely
to the true value of n*. Notice that they do
not quite lie in a straight line. They seem to
first increase on one line uutil a—0 and then
decrease on a line through the origin. So the
linear solution is not proportional to =*.

Example 2. The quadrupole plant.

With a combination of the double exponential
plant and the single oscillator plant, a sym-
metric arrangement of four poles is obtained.

1 0
0o -1 O

When W=1 in the oscillator portion this
plant was called a quadrupole. For other

300
L% M
200””34
5
2
Xq
X3
100
T,
%o 100 200 300 400 500 600
M, Mx

Fig. 6. Graph of the Sequence {m;}

values of W the plant was called a quadrupole.

The designed control history for this run
was —1, 0, +1, with the two degrees of
freedom this gives, both the 72 and the 7
plots shown in Fig.6 moved far out along
straight lines. Actually the sequence first
moved out, then part way back, and then
out again, giving the best example found of
the way in which the sequence {z.} can depart
from the vector #*. Even with this behavior
all the operators converged.

Example 3. The quadrupole oscillator plant.

As a variation, the quadrupole plant is

investigated with w=4

8o )
A= 0 4 bz[_‘l) T=2.0
o ) ¢ 1. :
—03
”*z[ .5 | M=100
15

The largest element of #* is the first, and
in Fig. 7 it is the element x, in the sequence
of vectors {m} which show the largest mag-
nitudes.



222
84
1(2, 1
44
6 5 4 3 iz 2
0 bt @by X = — ;
o =m* -] 12 16 20 24 28
12 z
i

Fig. 7. Graph of the Sequence {m:!

7. Conclusion.

It is possible to treat the boundary condition
with non terminal state by an approach similar
to that used in the new computing method®
for all the terminal condition were fixed.
However, one can not handle the relations
with some assurance.

There may be more than one external
solution, the operator T(z,) may be so complex
that sequence method is difficult to handle;
an analytic expression may not be available
for the form of the optimal control #*(¢); and
so on. One conclusion is that the strength of
the method is its flexibility and the problem
can be solved under such an assumption as
the corresponding costate vector P*(¢) exists.
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