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Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of
wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are
mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure,
load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support
vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for
evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to
numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR
models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to
three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping

systems from laser or ultrasonic measurements of wall-thinning defects.
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1. INTRODUCTION

Piping systems of nuclear power plants are subject to
a number of collapsing forces. In particular, the wall-
thinning degradation in bent piping systems (pipe bends
and elbows) of carbon steel material is considered as an
important degradation factor [1]. The wall-thinning defect
is mainly caused by flow-accelerated corrosion, which
reduces the failure pressure, load-carrying capacity,
deformation ability, and fatigue resistance of pipe bends
and elbows. Therefore, it is necessary to calculate collapse
loads of wall-thinned bends and elbows accurately
according to defect size under various loading conditions.

Pipe bends and elbows are connected into piping
systems to allow modification of the isometric routing
and, more importantly, pipe bends are usually incorporated
to reduce anchor reaction forces. They are also capable
of absorbing considerably large thermal expansion and
seismic movement through energy dissipation as a result
of local plastic deformation so that they maintain the
integrity of the entire piping system under transient
loading conditions [2-3]. As they are regarded as critical
components of nuclear power plant piping, significant
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care must be taken so as not to exceed their collapse
moment. Therefore, as mentioned above it is essential to
assess the safety margin under various operating conditions.

This paper uses a support vector regression (SVR)
model [4] which has been successfully employed to solve
nonlinear regression problems [5-8]. The concept of the
SVR is to map nonlinearly the input data into a high-
dimensional feature space and subsequently carry out
linear regression. In this paper, the SVR concept is
further expanded and the SVR is combined with a fuzzy
algorithm in what is termed a fuzzy support vector
regression (FSVR). That is, a fuzzy membership grade is
applied to each data point and the SVR is reformulated so
that each input data point can make different contribution
to the learning of the regression function. This methodology
was applied to the development of a soft-sensing model
for the feedwater flowrate [9] and was shown to have
good performance. The objective of the present study is to
calculate the collapse moment under a variety of loading
conditions for the measured defect geometry using FSVR
models.

The collapse moment-related data should be provided
to develop and test the FSVR model. These data are
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generated [8] by performing finite element analyses (FEAS)
for various loading conditions and defect geometries such
as the thinning defect locations, bend radius, bend angle,
wall thickness at the thinning defect, thinning length,
thinning angle, internal pressure, and the closing and
opening bending modes. The collapse moment is calculated
using these loading conditions and defect geometries as
the inputs into the FSVR models.

2. COLLAPSE MOMENT DATA USING FEAS

This study uses the collapse moment calculated using
the twice-elastic slope method [10-11]. Carbon steel
bends that have an outer diameter (D,) of 400mm and a
nominal thickness (z...) of 20mm are used. The bend
angles ( ¢) are 30°, 60°, and 90° and the bend radius
ratios (R,/R.) are 3 and 6, as shown in Fig. 1 [8]. Bends
and elbows are connected to straight pipes with lengths
equal to ten times the mean radius (R,) to allow free
ovalization of the end section of the bends. Wall-thinning
defects are located at the intrados and extrados centerlines
and the crown of the pipe bends and elbows; the axial
and circumferential shapes of defects are circular.

The deformation behavior of an elbow under a bending
load is governed by its geometry, including its bend
radius, bend angle, and radius/thickness (R/f). Thus, the
collapse behavior of local wall-thinned elbow is also
influenced by these geometrical parameters. The R/t of
an elbow is dependent on the safety class and operating
pressure of the piping system, and elbows with R/t values
of 10 to 30 are typically used in the secondary piping
system of a NPP at which the local wall-thinning is more
likely to occur. As the present results were developed
based on the analysis results of an elbow when R/t=10,

Fig. 1. Definition of Dimensions of Wall-Thinned Defects
in Pipe Bends
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the results are properly applicable to the evaluation of
wall-thinned elbows in a secondary piping system operated
at a relatively high pressure, i.e., a high-energy piping
system. Moreover, an additional analysis and verification
considering various R/t values are needed to expand the
applicability of present results to integrity evaluations of
wall-thinned elbows operated at moderate and low pressure.

In order to evaluate the collapse moment of wall-
thinned pipe bends, a nonlinear three-dimensional (3D)
FEA was performed. In the FEA, various loading conditions
and defect geometries were considered, as summarized in
Table 1. The combined internal pressure and bending
loads are considered as an applied load. A range of internal
pressure from 0 to 20MPa was used, and the in-plane
bending of either the closing- or opening-mode is applied
at a constant internal pressure.

Table 1. FEA Conditions for Wall-Thinned Pipe Bends [8]

Wall-thinned location of pipe bends | Extrados, Intrados, Crown

Bend radius (R,/R,.) 3,6

Bending angle (°) 30, 60, 90

LJD, 0.25,0.5,1.0,15,20

Defect

(tromto) tuom 0.233, 0.466, 0.699

geometry
0ln 0.0625, 0.125, 0.25, 0.50
Load Bending mode Closing, Opening
oa
Pressure (MPa) 0,5, 10, 15, 20

t, : the minimum thickness of the thinned area
L : the equivalent thinning length
6 : the circumferential half angle of the thinning defect

Figure 2 depicts the finite element meshes used in the
FEA. Twenty-node solid elements with a reduced
integration order were used to model the bends and pipes.
Considering geometrical symmetry, one fourth of the
bend was modeled for both intrados and extrados wall-
thinning defects, and half of the bend was modeled for a
crown wall-thinning defect.

According to prior studies, the collapse moment of
pipe bends and elbows with crack defects depends on the
mesh patterns [10-11]. However, the gross structural
behavior of defect-free pipe bends and elbows does not
strongly depend on the mesh patterns [12]. Considering
the characteristic of wall-thinning defects with a smooth
3D shape, as shown in Fig. 2, it is expected that the gross
behavior of wall-thinned pipe bends is similar to that of
defect-free pipe bends over that of cracked pipe bends.
Thus, compared to the FEAs for the collapse of defect-
free pipe bends [12-13], the mesh patterns used for this
study are sufficient to evaluate the collapse behavior of
wall-thinning pipe bends and elbows.
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Wall-thinned
o area

Defect at Extrados
Wall-thinned
area

Defect at Crown

Fig. 2. Finite Element Model Used in FEASs [8]

ABAQUS code [14], a general-purpose FEA code,
was used for this study. A former FEA evaluation showed
that a consideration of the geometrical nonlinearity in the
FEA is very important for a precise determination of a
pipe bend deflection under various combinations of the
closing and opening mode of bending and internal
pressure [12]. Therefore, both geometric and material
nonlinearity are considered in this FEA. The yield stress
and ultimate tensile stress of the specific material of the
bend and the attached pipes are 302MPa and 450MPa,
and the elastic modulus and the Poisson ratio are 206GPa
and 0.3, respectively.

3. FSVR MODELS

The SVR represents an excellent learning technique
that has been introduced in the framework of structural
risk minimization (SRM). Unlike classical adaptation
algorithms that minimize the absolute value of the error or
the mean square error, the SVR method accomplishes SRM.
This way, it creates a regression model with the expected
probability of error for regression problems, which implies
that it provides good performance with unseen data. This
property indicates that SVR models perform well on a test
data set as well as on a training data set [15].

3.1 FSVR Methodology

In general regression problems, the learning machine
is supplied with the training data, from which it attempts
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to learn the input-output relationship. The basic concept
of the SVR is to map nonlinearly the original data x into
a higher dimensional feature space. Hence, given a set of
data {(x;,y;)}-1 where x; is the input vector, y; is the actual
output value and N is the total number of data points, the
SVR function considers approximation functions as follows:

y=f(x)= Zw,qﬁ,-(x) —w'p(x)+b @

Here, ¢.(x) is a feature that is nonlinearly mapped from
the input space X, w=[w; w ..wy]",and ¢=[ ¢/ ... ¢ v]"

The support vector weight w and bias b are calculated
by minimizing the regularized risk function

RO =W W AY |y, ), %)
where
_ 0, |yi*f(X)|<£
|yi A { |yi - f(x)| -&, otherwise ©)

Here, Aand ¢ are user-specified parameters, and ;- A(X)|-
is the einsensitive loss function [4]. The loss is equal to
zero if the difference between the calculated f(x) and the
measured value is less than the error level ¢. Vapnik’s -
insensitive loss function defines the ¢ tube (see Fig. 3). If
the calculated value is within the tube, the loss is zero.
Here, when =0, Vapnik’s e-insensitive loss function is
equivalent to the absolute error (L, norm) function. The
constant 2 determines the trade-off between the flatness
of f(x) (the weight vector norm) and the amount up to
which deviations larger than ¢ are tolerated.

The FSVR is known as support vector regression (SVR)
further enhanced with a fuzzy approach. The FSVR model
incorporates fuzziness into the SVR model input. The

Vi y observed point

_ I AR

regression function

observed point X y;

v

Fig. 3. The Insensitive Tube (& ¢) and Slack Variables
& and & for FSVR
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proposed FSVR enhances the SVR by reducing outliers
and noise. By applying a fuzzy membership function to
each data point of the SVR model, the regularized risk
function can be reformulated such that different input
data points can make a different contribution to the learning
of the regression function as follows:

»-f(x

N
R(w)= %wrw + ﬂ.z,u,
i=1

. 4

Here, u; is a fuzzy membership grade. Common SVR
methods apply an equal weight to all data points. However,
the FSVR uses different weights according to their
importance, as specified by the fuzzy membership grade.
The regularized risk function is converted into the following
constrained risk function:

ROWEE) = ww A (6 +4) ©)

y-woe-bse+&, i=1,2,--,N
under constraints { W' @(x)+b-y, <e+&, i=1,2,-, N

4:1'5 é*ZO, i=1,2,---,N (6)

where &[& & .. &) and &'=[&") &, .. £4]" are slack
variables representing the upper and the lower constraints
on the system outputs, respectively. These slack variables
have positive values.

The solution to the constrained optimization problem
is given by the saddle point of the Lagrange functional:

(D(w,b,g*,.,g‘,*,a,, a:,ﬂ,,ﬂ,*):
%WTW +ﬂiy, ((,g, +§,*)—i0!, [WT(P(X;)JFb—)’, “‘5‘“:,1
i=1 i=1

_ia: |:y’ —WT(P(X,)_b+g+é:::|_i(ﬁi§' +ﬁ:§:) f

i

v

The above equation is minimized with respect to the
primal variables w, b, &, &, and then maximized with
respect to the nonnegative Lagrangian multipliers g, o7
i, B The minimum with respect to w, b, &, & of the
Lagrange functional gives the following conditions:

N

w:i(ai —af*)q)(x,), Z(a,. —a,.*)zo,

=1 i=1

Mt —a,— B =0, i=1,2,-,N,
Atyy—a =B =0, i=1,2,---,N.

|

®

The Lagrange functional can be rewritten using the
above minimum conditions, as follows:
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N

‘I’(a,,ai*):ﬁ:y,(a, 70{,-*)752((,(,- +a,-*)

i=1

i=

N N
L I ) s S

i=1 j=1 (9)
N
(e -a)=0
i=1
under constraints < 0< o, <Ay, i=1,2,---,N
0<a <Au, i=1,2,---,N
(10)

By solving the above equation using a standard
quadratic programming technique, the values of ¢, and ¢
can be determined. By substituting Eq. (8) into Eq. (1),
the regression function becomes:

y=f(x)= i(a‘ - af)(pr(x, )o(x)+b = i(al — af)K(x,x,)ﬁ-b ,
i=l1 i=l1 (11)

where K(x,x;)=¢"(x;)¢(x) is the kernel function. The kernel
function used in this study is the radial basis function

)V (x—
K(X’Xf)=exp[—%‘(zxx")}

Many coefficients (a-a7) have nonzero values. The
training data points corresponding to nonzero values
have an approximation error equal to or larger than ¢ and
are known as support vectors. The bias 5 is calculated as

bz—%Z(a,.—a;)(K(x,,,x[)+K(xs,xl)), (12
i=1
where x, and X, are support vectors.

The two most relevant design parameters for the FSVR
model are the insensitivity zone ¢ and the regularization
parameter A. An increase of the constant A penalizes
larger errors, which leads to a decrease of the approximation
error. This can be also achieved simply by increasing the
weights vector norm. However, an increase in the weight
vector norm does not ensure the good generalization of a
model. An increase in the insensitivity zone ¢ implies a
reduction in the requirements for the accuracy of
approximation and also decreases the number of support
vectors, leading to data compression. In addition, an
increase in the insensitivity zone ¢ has a smoothing effect
on modeling data with a high noise level.

3.2 Training Data Selection

Each set of data was divided into three types of data
sets: training data, optimization data, and test data. The
training data set was used to solve the coefficients ¢:-a',
and the bias & in Eq. (11). The optimization data was
used to optimize the design parameters of the FSVR
models using a genetic algorithm. Test data was used for
independent verification of the developed FSVR models.
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The appropriate selection of training data is very
important because it can affect the optimization of the
FSVR model. The input and output training data is
expected to have many clusters in each group and the
data at these cluster centers is more informative than the
neighboring data. An FSVR model for each data group
(extrados, intrados, and crown defects) can be well trained
using informative data. Cluster centers were located using
a subtractive clustering (SC) scheme and were used as
training data.

N input/output training data z=(X:,y:),k=1,2,....N in a
group was assumed to be available and the data points
were normalized in each dimension. The SC scheme begins
by generating a number of clusters in m x N dimensional
input space. The SC scheme uses a measure of the potential
of each data point, which is a function of the Euclidean
distances to all other input data points [16]:

N ?/2
Rky=Ye bl
J=
Here, r.is a radius that defines a particular neighborhood.
It should be noted that the potential of a data point is high
when it is surrounded by an abundance of neighboring
data. After the potential of each data point is calculated,
the data point with the highest potential is selected as the
first cluster center.
In general, after determining the i-th cluster center c;
and its potential value Py, the potential of each data point
is revised using the equation

k=12,.,N. (13

P =Pk - Pl g 1o N, (14)
where r, is usually greater than r, in order to limit the
number of clusters generated. Equation (14) signifies that
the amount of potential is subtracted from each data point
as a function of its distance from the cluster center. The
data points near the cluster center have a greatly reduced
potential and are unlikely to be selected as the next cluster
center. When the potentials of all data points have been
revised according to Eq. (14), the data point with the
highest potential is selected as the (i+1)" cluster center.
The calculation stops when a condition, Ps< &Py, is true;
otherwise the loop is repeated. If the calculation stops
finally at the step N, there are N. cluster centers considered
to be in the data group. The input/output data (training
data) positioned in the cluster centers of the data group
are selected to train the FSVR model for each group. In
addition, every five time-steps, the test data is selected
from the remaining data where the training data had
already been eliminated. Hence, the optimization data
and test data comprise 80% and 20% of the remaining
data, respectively.

The cluster centers selected as a training data point
are more important and should be more heavily weighted
relative to the other neighboring data points when training
the FSAR models. Therefore, the potential of the cluster
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centers calculated by Eq. (13) was used as a fuzzy
membership grade in Eq. (4), as follows:
1

f=1-——, i=1--,N..

B (D) (15

3.3 Optimization Using Genetic Algorithm

The FSVR model is developed by learning from
experimental data and should be optimized to maximize
the estimation performance. The parameters to be optimized
consist of the insensitivity zone ¢, the regularization
parameter A, and the kernel function parameter o for the
design parameters of FSVR models; they consist of cluster
radii, r.and r,, for the sampling of the training data.

In this study, a genetic algorithm is used to optimize
the design parameters of the FSVR models. Compared to
conventional optimization methods that move from one
point to another, genetic algorithms start from many
points, simultaneously climbing many peaks in parallel.
Accordingly, genetic algorithms are less susceptible to
being stuck at local minima compared to conventional
search methods [17-18]. Moreover, a genetic algorithm is
most useful for solving optimization problems with
multiple objectives. The term chromosome in a genetic
algorithm includes a candidate solution that minimizes an
objective function, generally encoded as a bit string. As
the genetic algorithm optimizes five parameters, each
chromosome has five parameters encoded as a bit string.
As generation proceeds, populations of chromosomes are
iteratively altered by biological mechanisms inspired by
natural evolution, such as selection, crossover, and mutation.

The genetic algorithms require a fitness function that
assigns a score to each chromosome (candidate solution)
in the current population, and maximize the fitness function
value. The fitness function evaluates the extent to which
each candidate solution is suitable for the specified
objectives. In this study, the specified multiple objectives
are to minimize the root mean square error and the
maximum error by as much as possible. Therefore, the
following fitness function is suggested:

F= exp(_:ulE] —E, - ILE; _fu4E4) : (16)
Here, ui, uo, us and ua4 are the weighting coefficients,

and Ei, E,, Es and E, have a concept of energy defined
respectively as

\/ Zy,<k) 3,(k)

t k=1 (17)
\/ N,
(k)= 3, (k)
N kZ:l: ¥ b (18)
E3:mf'x{yr(k)_j}r(k)}’and (19)
E, :m?x{yu(k)—f’u(k)}- (20)
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The variables y(k) and y(k) represent the output
calculated by the FEA and the output calculated by the
FSVR model, respectively. The subscripts ¢ and o indicate
the training data and the optimization data, respectively,
and N, and N, represent the numbers of the training data
and the optimization data.

4. APPLICATION TO THE CALCULATION OF THE
COLLAPSE MOMENT

To develop FSVR maodels for calculating the collapse
moment of wall-thinned pipe bends and elbows, first of
all, the necessary data must be available. As sufficient
related field data from nuclear power plants do not exist,
FEA data were used to develop an FSVR model for each
loading condition and defect geometry case, as described
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Table 2. Calculation Accuracy of the FSVR Models

in Section 2.

The ranges of the input signals for the FSVR models
in this paper are described in Table 1. The generated data
total 3712 input-output data pairs (xi,xz,---,xs,»)
consisting of 1700 extrados defect data, 1700 intrados
defect data, and 312 crown defect data pairs. The
characteristic of the collapse moment is much different
according to the three wall-thinning defect locations of
extrados, intrados, and crown, as represented by xi.
Therefore, the data are classified according to the three
defect locations and three FSVR models are designed
respectively for the three classes. The input signals, x,
through xs, indicate the bend radius, bend angle, wall
thickness at the thinning defect, thinning length, thinning
angle, internal pressure, and bending modes of closing
and opening, respectively. The output y is the collapse
moment. The inputs and output to the FSVR models are
normalized so that they have a standard deviation of one
and a mean of zero. The normalized input and output
signals are applied to the FSVR models. The actual
calculated collapse moment can easily be recovered from
the normalized calculated collapse moment using the
average value and standard deviation of the collapse
moment of the training data.

Figure 4 shows the calculation results of the collapse
moment using the FSVR model for extrados defects,
intrados defects, and crown defects. Figure 5 shows the
fuzzy membership values of training data inputs for the
extrados defects. Figures 6-7 show the calculation results
of the collapse moment using the FSVR model for
intrados defects and crown defects.

Table 2 summaries the calculation accuracy of
collapse moments using the FSVR models. The FSVR
models show similar performance for the three defect
locations. The relative RMS errors are 0.2074% for the

Defect location Extrados Intrados Crown Total
Training data selection SC Fixed interval SC Fixed interval SC Fixed interval SC Fixed interval
Fitness 0.9288 0.1359 0.8995 0.1943 0.9678 0.8264 - -

Number (No.) of SVs 947 904 741 1000 205 227 1893 2131

o No. of data 1361 1361 1361 1361 250 250 2972 2972
Training | gms error (%) | 0.2098 0.3274 0.2205 0.0987 0.0849 0.2304 0.2074 0.2409
data " Max error (%) | 28201 45267 0.3860 0.1589 0.1022 2.4363 2.8201 45267

o No. of data 282 282 282 282 51 51 615 615
OPtmiza- Fems error (%) | 02155 | 05391 | 03167 | 08084 | 01367 | 03822 | 02624 | 06671
tion data "1y error (%) | 0.8279 6.5296 1.1647 4.9616 0.5927 1.0549 1.1647 6.5296

No. of data 57 57 57 57 11 11 125 125
Testdata | RMS error (%) | 0.2543 0.3312 0.2703 0.4589 0.1540 0.4081 0.2547 0.4009
Maxerror (%) | 0.6529 1.2211 0.8076 1.8703 0.4050 0.8076 1.4957 1.8703
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training data, 0.2624% for the optimization data, and
0.2547% for the test data. Additionally, it is known that
the RMS error magnitude of the FSVR models of the test
data is similar to that of the optimization data. Therefore,
if the FSVR models are optimized first using data for a
variety of loading conditions and defect geometry cases,
they can accurately calculate the collapse moment for
any other defect case. Table 2 shows the calculation
results when the training data are selected at every fixed
interval in a given data set. As shown in Table 2, the
FSVR model with the SC data sampling option is much
better than that with a fixed interval sampling. The collapse
moment calculation was done in a previous study [8]
using the SVR models. However, it is shown in this paper
that FSVR models can calculate the collapse moment
more accurately. In the aforementioned previous study,
even if the training data, the optimization data, and the
test data differ from those of the present study, the relative
RMS errors are 0.2333% for the training data, 0.5229%
for the optimization data, and 0.5011% for the test data.
Considering that the calculation accuracy of test data is
most important, (i.e., considering the RMS errors of the
test data set), the calculation accuracy of the proposed
method is approximately two times better compared to
that of the previous study [8].

5. CONCLUSIONS

In this paper, an FSVR method is used to calculate
the collapse moment due to the wall-thinning defects of
bends and elbows in piping systems. Three FSVR
models were developed for three data sets divided into
the three classes of extrados, intrados, and crown defects.
The FSVR models were trained using the data set
prepared for training (training data), optimized by the
optimization data set, and verified using the test data set
independent of the training data and the optimization
data. The developed FSVR models were applied to the
numerical data obtained by the FEA. The relative RMS
errors are 0.2074% for the training data, 0.2624% for the
optimization data and 0.2547% for the test data. The
RMS error magnitude of the FSVR models for the test
data is similar to that for the optimization data.
Therefore, if the FSVR models are optimized first using
a number of data that include a variety of loading
conditions and defect geometry cases, they can
accurately calculate the collapse moment for any other
defect case. Essentially, this method was developed to
predict the collapse moment easily for the measured
defect geometry.
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