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1. INTRODUCTION

Digital image processing (DIP) has garnered research
attention as a means to analyze two-phase flows such as
subcooled boiling phenomena. In particular, many studies
on the measurement of the bubble size have conducted
modeling involving DIP with high speed camera techniques
[1,2]. In previous studies, images taken in one direction
of objects were considered to be axis-symmetric, such as
a spheroid, in order to calculate the volume or equivalent
diameter. However, since most objects have three-dimensional
degrees of freedom, one-directional image processing is
limited in its capacity to precisely simulate the object. 

An orthogonal double-image was used to analyze
bubble size and volume by Zeitoun et al. [3]. They divided
the bubbles into two groups: spherical and elongated. In
the former, the bubble volume and surface area are calculated
by rotating a cross-section around the maximum diameter
and by averaging the values on the orthogonal double-
image. In the latter, each image is divided into six slices
and the upper and bottom sections are assumed to be
spherical domes and the inner sections to be parts of conical
bodies whose two bases are assumed to be ellipses.
However, there is no method to determine the bubble

boundary in their research, thus necessitating a complicated
process to calculate the surface area and volume in an
elongated bubble.

Recently, Hibiki et al. [4] and Takamasa et al. [5] applied
an image processing algorithm used by Takamasa and
Watarai [6] and a stereo image-processing method (SIM)
in order to obtain dimensions of bubbles such as major
and minor axes. They assumed that the bubble is a triaxial
ellipsoid and they determined the dimensions of three
axes from an analysis of two simultaneous images taken
from orthogonal directions. However, assumptions of an
ellipsoidal bubble shape can be insufficient to express
deformed bubbles from a triaxial ellipsoid. 

One of the initial and fundamental stages of DIP is
the detection of characteristic image regions in order to
decompose images into objects of interest and their
background, and the image edges are used as characteristic
regions. The most commonly used edge finding techniques
are the gradient based Prewitt, Sobel, and Laplace detectors
[7], the second derivative zero-crossing detector [8], and
a computational approach based on the Canny criteria [9].
However, these edge finding techniques fail in producing
confident results due to noise, image blur, and non-
uniform scene illumination. Also, continuous image

In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to
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Szczypin、ski and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour
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boundaries such as moving bubbles may cause broken edge
fragments or may not be detected at all. To overcome these
defects, an active contour model has been used as an edge
detecting method. The active contour is an energy-minimizing
curve that deforms to fit image features, known as snakes,
and was first proposed by Kass [10]. This energy depends
on its shape and location within the image and then local
minima of this energy correspond to desired image properties.
The active contour model has meanwhile become an
established and important technique for locating image
boundaries in computer vision applications. Recently, a
number of papers related to this subject have been published
and some improvements and extensions to the original
method have been reported [11,12].

In the present paper, to overcome the limitations of
one-directional image processing, a simple algorithm is
developed using two images for the same object in an
orthogonal direction. The main structure of the algorithm
based on an active contour model is reconstruction into
three-dimensional objects from two images. In order to
distinguish the object of interest from the background, an
active contour model is applied and modified. The developed
two-directional image processing approach is applied to
virtual bubble images and is verified by simulation using
imaginary images. Finally, the developed algorithm is
applied to measure the size and volume of condensed vapor
bubbles in subcooled flow boiling.

2. DESCRIPTION OF THE CENTRAL CONTOUR
MODEL

In order to measure the bubble size and volume from
the images, the boundaries between the backgrounds and
bubbles should be discriminated, i.e., extraction of
bubble edges should be preceded. The active contour
model is used to decompose or segment visual
information into the object of interest and its background,

according to the snake model first proposed by Kass
[10]. The snake is an energy-minimizing spline guided
by external constraint forces and influenced by image
forces that pull it toward features such as lines and edges.
Figure 1 shows the concept of the snake, where the
arrows represent the moving directions of the snake’s
points towards the borders of the object to be analyzed
when the contour consists of a set of N-points. The
proposed energy function is given by the following
integral equation: 

The position of the snake is described parametrically by
v(s) = (x(s), y(s)), where x(s) and y(s) are x- and y-coordinates
along the contour. s is a parameter variable to describe the
contour and is from the first to the last point comprising
the contour. That is, s=0 and s=Sm denote the first and last
point of the contour. Eint represents the internal potential
energy of the contour, Eext the energy that models external
constraints imposed onto the contour shape, and Eimage the
energy derived from image features, such as the image
brightness distribution. In this paper, the central contour
model proposed by P. Szczypin、ski and P. Strumillo [13] is
used to extract the boundary edges. The central contour
model to find the boundary is briefly described below.

This approach is based on the idea that the initial
potential energy of contour Esnake is minimized using a
technique in which a lower contour energy state is reached
by converting its potential energy to kinetic energy and
then dissipating this kinetic energy through an energy
dissipating function. This means that a certain mass is
associated with the moving contour, which dissipates its
kinetic energy due to the presence of some viscosity of
an abstract environment in contour motions. Thus, the
equation of the contour motion to describe the contour
dynamics is given as:

where m is the virtual mass density of the contour, the
virtual damping viscosity factor, which accounts for the
contour energy dissipation, and F

→
the intrinsic and external

forces acting on the contour. Instead of a continuous contour
line, a set of points is used to discretize spaces and the
time domain is discretized to numbered time instances.
The discrete equation of Eq. (2) is assumed as:
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Fig. 1.Construction of an Active Contour Model



where F
→

ext is the force minimizing the snake energy
component Eext in Eq. (1). F

→
tens and F

→
rig are the forces

resulting from the contour tension and rigidity, respectively,
associated with the contour internal energy (Eint), and F

→
img

is the force vector derived from the image brightness
distribution designed to attract the contour to the image’s
salient features. 

The discrete equation to find the contour coordinated
for the current time t from Eqs. (3) and (4) is:

where the discrete equations for the forces have been
proposed [7] as follows:

where r(s) is the distance between the points belonging to
the contour and an arbitrarily chosen reference point encircled

by the contour calculated as

The force F
→

ext is represented as the derivative of the
energy function Eext with respect to the distance between
contour snake points and an arbitrarily chosen reference
point encircled by the contour, i.e.   , in P.
Szczypin、ski and P. Strumillo’s research. They represented
the energy function as Eext (r(s))=-h1 ln(r(s))+h2r3(s).           
The forces, F

→
tens and F

→
rig, which associate with contour

internal energy Eint, are derived via the following equation:

where w1 and w2 regulate the contour tension energy Etens

and the contour rigidity energy Erig, respectively. Etens and
Erig denote the contour’s resistance to stretching and to
bending, respectively. For a chosen snake point s, the
contour tension energy Etens(v(S)) can be considered as
w1[v(s)-v(s-1)]2+w1[v(s+1)-v(s)]2 due to the influences of
adjacent snake points, i.e. v(s-1) and v(s+1). This energy
reaches a minimum                           for v(s)=[v(s+1)+ v(s-
1)]/2 as given by Eq. (7). For the rigidity force, 
becomes zero for v(s)=[v(s+1)+v(s-1)]/2 to similarly reach
minimum rigidity energy. Finally, the rigidity force is
derived as given by Eq. (8). For the image force F

→
img , they

assumed some threshold value between the object of
interest and the background brightness and delineated this
with Eq. (9). 

At this time, use of the reference point encircled by the
contour is advantageous in finding a boundary due to the
presence of pre-information for the boundary. However,
it also has a disadvantage in that the determined boundary
according to the position of the initially referred point
may be erroneous due to the dependency of the model
equations. In Eq. (9), J(v(s,t)) denotes the gray value at
v(s,t) and the used image is a pixel type rather than a vector
type. Thus, the image has a local gray value only at an
integer lattice and the discrete gray value may generate
unstable contours. This confirms the need for interpolations
or image functions between the integer points of the image. 

The meanings of the parameters in Eqs. (6) to (9) are
described in Table 1. The range of the values has been
presented in P. Szczypin、ski and P. Strumillo’s research and
the indicated values are used in this study. In Table 1, the
parameter of the threshold level, JC, plays an important
role of moving the contour to the boundary. The central
contour model uses a constant threshold level, and hence
the method of locating the boundary may fail when the
object’s surrounding are misty or opaque. Therefore, a
method of variable or smart threshold value detection is
needed. Thus, the central-active contour model proposed
by P. Szczypin、ski and P. Strumillo does not perform well
when the contrast value on the object’s boundary is not
uniform; for example, a silhouette of a transparent object
such as the bubbles shown in Fig. 2. Figure 2 shows
bubbles in a subcooled boiling flow at atmospheric
pressure. Note that the bubbles have specular points due to
reflected and refracted rays from other bubbles. In such as
case as this, the gray levels on the boundary of a single
bubble are locally different, which necessitates the
application of a local threshold level.

3. MODIFICATION OF THE CENTRAL CONTOUR
MODEL

In the previous section, the central contour model to
be used in this study was explained and aspects for
improvement were itemized in order to obtain a more
distinct and stable boundary that is independent of the
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initial reference point. The suggestions for improvement
are summarized as follows:
i. Area-weighted centroid to reduce dependency on the

reference point
ii.  Bilinear interpolation to increase the stability for the

force on the image due to the pixel images
iii. Variable local threshold value to extract obscure

boundaries

3.1 Area-Weighted Centroid
The initial reference point is fixed until the completion

of the calculation, and as such the result may be affected
by the choice of this point. Thus, the reference point must
be updated every iteration even if the positions of the
reference point correspond with the case of using a different
reference point. The reference point is improved using an
area-weighted centroid. Figure 3 shows the area-weighted
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Fig. 3. Area-Weighted Centroid

Parameter Name Value Description

Tension (W1) 0.625 Regulates contour tension energy (Resistance to stretching)

Rigidity (W2) 0.0625 Regulates contour rigidity energy (Resistance to bending)

Viscosity ( ) 360 Damping viscosity factor accounting for contour energy dissipation

Mass (m) 0.1 The mass density of the contour

Contrast coefficient (Jw) -2 The coefficient defining the magnitude and direction of image force

Coefficient (h1) 0.1719 Energy function coefficient 1.

Coefficient (h2) 0.004 Energy function coefficient 2.

Threshold level (Jc) variable Threshold brightness value

Table 1. A Set of Model Parameters

Fig. 2. Bubble Image in Subcooled Boiling Flow



centroid. The initial reference point is selected arbitrarily
in the same manner as in the original central contour model.
This point is then used to calculate the first contour through
the first iteration. The reference point is subsequently
updated as the area-weighted centroid, and the calculated
centroid is used as the reference point at the next iteration.
The area-weighted centroid, (xc,yc), is calculated as
follows:

where Ai
(n) denotes the i th triangle area that is connected

among the previous centroid, the i th, and (i+1)th contour
points at the n step. In the improved central contour model,
the initially referred point is used at the beginning, but the
effects of the initially referred point decrease with further
iterations.

3.2 Bilinear Interpolation
In Eq. (9), J(v(s,t)) indicates the gray value at v(s,t)

and the used image is a pixel type rather than a vector type.
Since the image has a local gray value only at an integer
lattice and the discrete gray value may generate instability
of contours, bilinear interpolation is used to ensure stability
of the force on the image due to the pixel images. Figure 4
shows this bilinear interpolation, which is given as follows:

where ux and uy are the x- and y-directional ratios between
the considered point and the near integer lattice point,
respectively.

3.3 Variable Local Threshold Value
When the contrast value on an object’s boundary is not

uniform, a local threshold level needs to be applied using
the original central contour model. First, in order to find
the local threshold level, the image domain needs to be
divided into sub-domains, which serve to exclude unnecessary
image regions. The division of sub-domains might affect
the calculation efficiency for determining the conversed
solutions, i.e., the extraction of an actual boundary, and
should be changed whenever the contour moves. To

satisfy these conditions, a dual-active contour model is
used. The dual technique uses an internal and external
contour as the initial snakes [14]. This approach  basically
consists of comparing one contour that expands from
inside the target feature with another that contracts from
the outside. The two contours are interlinked to provide
an adequate “driving force” that pushes out the contours
of the local minima, thus making the solution less sensitive
to the initial position, as shown in Fig. 5.

In this study, the driving force between the inner and
outer contours is used to constrain the alignment of the
three points. That is, the center point in the central-active
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Fig. 5. Construction of Dual Active Contour Model

(11.a)

(11.b)

Fig. 4. Bilinear Interpolation

(12)



contour model, the mth point on the inner contour, and the
mth point on the outer contour are aligned to the same line
by using the driving force, as shown in Fig. 6. Figure 6
illustrates the iterative threshold method between the inner
and outer contours. The iterative threshold method is one
means of finding the threshold level in the images. The
following explains the iterative threshold level. 

First, an initial threshold level, (0), is estimated by
calculating the average gray value of the image. The initial
value, (0), divides the image into two regions, R1 and R2 ,
where R1 and R2 denote the regions where gray values are
higher and lower, respectively, than the initial value. Then,
to calculate a new threshold value, the average gray values
of each, 1

(1) and 2
(1), with R1 and R2 are calculated and 

the new threshold value is calculated using

where the subscript indicates the region and the superscript
is the calculating step. Repeating these calculations until
converges, the threshold level can be obtained as:

When the iterative threshold level is applied to a dual-
active contour, a single sub-domain is divided into two
regions by each initial threshold level, and the iterative
calculations in each sub-domain are executed until the
threshold level converges. Each sub-domain consists of a
line connecting the nth points of the inner and outer
contours, as shown in Fig. 6. ISk and OSk denote the kth

point on the inner and outer contours, respectively, and
Gk,m is the gray value of the kth sub-domain and the mth

virtual position on the kth sub-domain, i.e., on the kth line.
After all the threshold values of the sub-domain converge,
Eq. (9) is modified as:

where                                                                   is
dependent on the local position and the iterative step.

4. DESCRIPTION OF THE DEVELOPED ALGORITHM

As the first step of the developed algorithm, the bubble
boundaries on each plane are extracted by applying the
improved dual active contour model. Since the focal length
between two images can be different, two images are
linearly scaled according to length based on a common
axis, i.e. the length of the z-axis in the case where the
images lie on the xz- and yz-planes. After two images are
scaled, some assumptions are applied to reconstruct the
bubble image. It is assumed that the two images are
positioned at an orthogonal plane. Therefore, one image
is on the xz-plane and the other is on the yz-plane. It is
further assumed that those images are silhouettes of the
objects to each plane. The object of interest is considered
to be that with two contact points with the planes, which
are parallel to the xy-plane. The contact points are positioned
at the top and bottom of the cuboids that include the object,
as shown in Fig. 7-(a). The silhouettes of the xz- and yz-
plane then have two points of contact with the lines,
which are parallel to the x- and y-axes, respectively. Those
points are positioned at the top and bottom of a rectangle
including the projected images. The top and bottom points
of contact with the cuboids correspond to the top and
bottom, respectively, points of contact with the rectangle
in the xz- and yz-planes. These descriptions are shown
completely in Figs. 7-(a) and 7-(b).

At this point, the points consisting of the contour projected
on the xz-plane do not have y-coordinate information,
while those of the silhouette on the yz-plane do not have
x-coordinate information. The y-coordinate information
of the snake in the xz-plane could be obtained from the
snake on the yz-plane. That is, the y-coordinate of the snake
in the xz-plane becomes the y value that corresponds to
the z-coordinate in a line connecting two contacting points
on a line parallel with the y-axis, as shown in Fig. 7-(b).
In the same manner, the x-coordinate of the snakes in the
yz-plane becomes the x value that corresponds to the z-
coordinate in a line connecting two contacting points on
a line parallel with the x-axis, as shown in Fig. 7-(c). Therefore,
four points could be found on one plane that is parallel to
the xy-plane, as shown in Fig. 8. It is assumed that the
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Fig. 6. Inner and Outer Contour
to Apply the Iterative Threshold Method

(13)

(14)



four points are positioned at the ellipsoidal boundary as
follows:

The centroid of the ellipsoid can be obtained, because
the two images are orthogonal, as follows:

Furthermore, if the arrangement of the four points
found above is equivalent to that shown in Fig. 8, an
inconsistency that conflicts with the assumptions may
arise. That is, the points are found in the projected image,
and as such they have to be positioned on the boundary
and be contact points on the object. However, the
boundary of the projected object based on the projected
ellipse in Fig. 8 is not consistent with the originally
extracted boundary, because the condition for the points
to contact with the projecting plane is excluded in the
arrangement of points in Fig. 8. 

When the four points are positioned as given in Fig. 9
and the two assumptions are satisfied, an ellipse
conditionally exists. Thus, it is assumed that the four
different ellipses consist of each cross-section, as shown
in Fig. 9. At this time, the four pieces of the ellipsoid
have a different centroid, and major and minor axes.
From these centroids, the major and minor lengths of the
volume of each slice can be calculated by the following
equation:

where j denotes each piece of the ellipse, and a and  b are
the major and minor length of each ellipse, respectively.
However, the rectangle connected by the four centroids is
overlapped (Arec,i), as shown in Fig. 10, and thus must be
removed. The total volume is calculated by stacking each
oval volume, the equivalent diameter is calculated by the
calculated volume, and the surface area is calculated by
stacking the meshed triangles between the two slices.

The procedures described above comprising the
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Fig. 7. Descriptions of the Developed Algorithm to
Reconstruct Two Images

Fig. 8. Finding Ellipsoid Center at Each Plane

Fig. 9. Rearrangement of Points at Each Plane

(15)

(16)

(17)



developed algorithm are summarized as follows:
i.   Extraction of boundaries from orthogonal images (e.g.

xz- and yz-planes) 
ii.  Linear scaling of two extracted boundaries for the

height ratio 
iii. Extension of 2D points on each plane into 3D points in

space
iv. Reconstruction of 3D bubble
v. Calculation of bubble volume, surface area, and diameter

5. RESULTS AND DISCUSSION

5.1 Verification of the Developed Algorithm
5.1.1 Improved Central Contour Model

The improved boundary extraction procedure using
the central-active contour model proposed in the present
study was compared with an existing model and verified
by testing an image with a trivial boundary. The test results
are summarized in Fig 11. The 1st and 3rd rows show the
initial state of the contour and the results of extracting the
boundary using the original and proposed models, as well as
the dual-active contour model are depicted in Fig 11. The
inner and outer points indicate the outer and inner
contours, respectively. The improved model in this study
is tested for three cases. Case (a), which corresponds with
case (d), is the simple case of a black circle in a white
background. This case was selected to check whether the
proposed model inherits the characteristics of the single-
active contour model, whose threshold value is a constant,
as in Eq. (9). From the results of applying the proposed
model to this case, it is found that the proposed model
can extract the same boundary as the original central
contour model.

In case (b), which corresponds with case (e), the gray
level of the boundary between the object of interest and
the surroundings varies. The object of case (b) is generated
by filling a regular octahedron with the gray level, which
increases from 30 to 240 in a counterclockwise direction.
Thus, only one piece among the eight regions in the regular
octahedron is found if a constant value is employed for
the threshold level when the reference point is positioned

in the region of interest. However, the original model
extracted the boundary incorrectly, as shown Fig. 11. Since
the proposed model uses local threshold levels that are
updated at every iteration, the calculated boundary agrees
with the actual boundary, and thus it is demonstrated that
the proposed model successfully extracted the boundary,
as shown in Fig. 11-(e). The boundaries of cases (b) and
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Fig. 11. Results of Proposed Dual Active Contour Model
Applying the Iterative Threshold Method

(a, b, c: Original Model  d, e, f: Improved Model)

Fig. 10. Overlapping Area Among Four Pieces of Ellipsoids



(e) are distinct, and the gray level of the background is
uniformly white. Thus, it is apparent that objects having
an obscure boundary and edge, such as the bubbles shown
in Fig. 2, require application of the proposed model. An
actual bubble was selected for case (c), which corresponds
with case (f), and the bubble is positioned at the left lower
corner, as shown in Fig. 2. It is difficult to extract the bubble
from the background using the original central contour
model, even though the boundary of the bubble can be
distinguished by the naked eye. This explains why the
gray levels on the bubble boundary are not constant and
there are various gray levels of the background. When
the improved central contour model is applied to this bubble,
the boundary is successfully extracted, as shown Fig. 11-
(f). From these results, it is demonstrated that the proposed
model can be applied even to boundary extraction problems
involving an obscure boundary and a non-uniform background.

5.1.2 Qualitative Confirmation of Reconstructed
Object

An experiment was conducted to confirm the capacity
of the developed algorithm to reconstruct three-dimensional
objects. Figure 12 shows a traversing unit with the ability
to rotate an object from 0 ˚ to 180 ˚. The objects were made
from rubber clay and are supported by a white stick having
the same color as the background in order to obtain a
chroma-key effect. The images were obtained when the
traversing unit moved in 15 ˚ increments in the counter-
clockwise direction. The three objects were tested and the

results are summarized in Fig. 13. In all cases, two images
taken when the object was rotated by 0 ˚ and 90 ˚ were
used to reconstruct the 3D shape using the algorithm
developed in this study. The boundaries were extracted
for each image and these boundaries were merged using
the developed algorithm. The reconstruction results for
the actual objects are presented in Fig. 13. In all cases,
the reconstruction was very successful. From the results,
it was that the shapes of the reconstructed object were
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Fig. 12. Experimental Facility to Record Revolving Objects

Fig. 13. Comparison of Actual Object and Reconstructed Object



similar or almost identical with those of the real object at
most of the rotated angles. Thus, the results confirm that
the objects reconstructed from the developed algorithm
can reveal the characteristics of the real objects, even
though only two orthogonal images are used. However,
the reconstructed results could be affected by selecting
two images, as only two orthogonal images are used in
the case of an axis-unsymmetrical object. Images
photographed using a recording device, such as condensing
bubble images in subcooled boiling, are arbitrary with
respect to angle in real applications. As such, the
reconstructed results require a sensitivity analysis for
selecting two images with rotated angles. The results of
the sensitivity analysis are summarized in Table 2. Two
images to reconstruct object are selected at 15 ˚ increments
in the counterclockwise direction. Thus, for example, if
one of the images is at 15 ˚, the other image is at 105 ˚.
From the results of this analysis, it is shown that the
developed algorithm can reconstruct the objects within

±4 % error even if the selected orthogonal double images
are changed, as shown in Table 2.

5.1.3 Quantitative confirmation of reconstructed
object

The algorithm developed to calculate the bubble
surface area, volume, and equivalent diameter from two
orthogonal images is verified by simulating generated
images using a CAD program, AutoCAD 2002 software.
The three-dimensional objects are created through
AutoCAD and orthogonal images are obtained from the
generated objects. The actual information of the
generated objects such as their volume and surface area
is acquired from AutoCAD’s internal calculator. The
information from AutoCAD is used as reference values.
The generated images and the reconstructed images of
the calculated results are depicted in Fig. 14. The
differences in volume and surface area between the generated
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Fig. 14. Calculated Matrix and Reconstructed Results

XZ YZ

0 ˚ 90 ˚

15 ˚ 105 ˚

30 ˚ 120 ˚

45 ˚ 135 ˚

60 ˚ 150 ˚

75 ˚ 165 ˚

Average

Standard deviation

CV(coefficient of variation)

Table 2. Sensitivity Analysis with Selection of Two Orthogonal Images

Crushed ball shape Disk-like shape Arbitrary shape

8367.00 9865.94 13140.40

8219.08 9377.18 13399.32

8046.48 9747.88 13363.48

8131.85 9626.22 13117.79

8050.26 9574.41 12780.34

8116.41 9249.98 12556.42

8155.18 9573.60 13059.63

121.51 228.87 331.31

0.0149 0.0239 0.0254

Crushed ball shape Disk-like shape Arbitrary shape

2066.43 2514.27 2820.27

2041.96 2554.37 2854.67

2016.16 2536.64 2845.81

2029.20 2461.35 2801.03

2056.00 2414.46 2764.95

2070.40 2341.85 2749.23

2046.69 2470.49 2805.99

21.44 81.36 42.64

0.0105 0.0329 0.0152

Volume (mm3) Area (mm2)



and reconstructed images are summarized in Table. 3. In
Table 3, Y and Z denote the rotational axes, which are
the x- and z-axes. CCW denotes the counterclockwise
direction. Thus, in case (b’) the object is rotated as in
case (b) on the y-axis by 75 degrees counterclockwise. In
the same manner, the rotated oblate of case (c’) rotates the
oblate of case (c) on the y-axis by 15 degrees counterclockwise.
The object of case (d’’) is rotated twice, i.e., on the z- and y-
axis. The results calculated using the algorithm are tabulated
in Table 3. From the results, it is shown that the developed
algorithm can estimate the volume and area of objects
within ±6 % and ±4 % error, respectively.

5.2 Application of Condensing Bubble in a
Subcooled Boiling Flow
The developed algorithm was applied to actual bubble

images in a subcooled boiling flow. Bubbles generated in
a heated wall condensed in the subcooled liquid at the
center of the flow. The images were sequentially recorded
by a high-speed camera, as shown in Fig. 15. The bubble
boundaries extracted using the improved dual active contour
model, shown in Fig. 15, confirm that the boundaries are
precisely found. The images in the left and right columns
of images (a) are used as images on the xz- and yz-planes,
respectively. The images between the left and right columns
of images (a) are orthogonal and the positions of the
recording camera are fixed. The reconstructed three-
dimensional bubble images are shown in Fig. 15-(c). Good
results are obtained when the developed algorithm is used
to measure the actual vapor bubbles. Thus, it can be
concluded that the developed algorithm can be used to
analyze the characteristics of vapor bubbles in a subcooled
boiling flow. It is expected that the variables calculated
from the images reconstructed using the algorithm, i.e.,
volume, surface area, equivalent diameter, and interfacial
area concentration, are estimated more accurately than
those measured using a single directional image. These
variables are presented in Table 4. Furthermore, it is expected

that the three-dimensional motions of the bubble can be
observed by its sequential reconstruction using the developed
algorithm, as shown in Fig. 16. 

Comparisons between the orthogonal two image
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Fig.15. Reconstruction of Condensing Bubble in Subcooled
Boiling

(a) - Recorded Images, (b) - Extracted Bubble Boundaries,
(c) - Reconstructed Bubble Images

Case Volume Error (%) Area Error (%)

(a) Sphere 3.61 2.27

(b) Simple disk -0.27 0.28

(b’) Rotated disk (Y-CCW 75) -4.59 -3.66

(c) Oblate 5.78 3.71

(c’) Rotated oblate (Y-CCW 15) 4.08 2.45

(d) Slug -1.17 -0.64

(d’) Rotated slug (Z-CCW 30) 5.08 0.66

(d’’) Rotated slug (Z-CCW 30 & Y-CCW 15) -0.46 -1.39

(e) Imaginary bubble 3.93 1.91

Table 3. Results of the Calculated Volume and Area Using the Developed Algorithm



processing approach and single image processing for
identical bubbles were carried out by calculating bubble
volume and surface area. The results are summarized in
Table 5. The results listed in Table 5 show the condensed
bubble of interest. The left and right bubbles indicated by
the arrow are recorded on the front and side of the heated
wall, respectively. In the case of the two orthogonal
image processing approach, two images are used to
calculate the bubble volume. However, only one image
on the side view is used to calculate the bubble volume in
the case of singe image processing. Thus, it is assumed

that the bubble is a revolving solid, i.e., oblate or prolate
with a circular cross-section. At this point, the revolving
axis becomes the nearest axis to an axial direction. In
cases (a) and (b), i.e., bubbles similar to a revolving
solid, the results obtained by applying single image
processing agree well with those where two orthogonal
image processing is applied. However, the obtained
volume and surface area in the case of single image
processing are inaccurate when there are bubble
deformations from the revolving shape. In particular,
when the bubble shape on the front view is larger than
that on the side view, the single image processing
overestimated the bubble volume and surface area, as
shown in Table 5, cases (c) and (d). On the contrary, the
single image processing underestimated the bubble
volume and surface area when the bubble shape on the
front view is smaller than that of the side view, as shown
in Table 5, cases (e) and (f). This indicates that single
image processing has limitations when applied to
deformable bubbles in subcooled boiling. It should be
noted that a more realistic shape can be obtained when
the developed algorithm is used.

The developed algorithm can be applied to the
reconstruction of three-dimensional bubble shape
without a concave surface as for a common axis of two
image planes even though the void fraction is high. Thus,
the proposed algorithm can be applicable when there are
coalescence and breakup of bubbles without concave
surface.

6. CONCLUSIONS

An algorithm was developed to reconstruct two
orthogonal images into a three-dimensional image. To
extract the boundary of an obscure object with a non-
uniform background gray level tone, a modified model
was proposed. The model proposed in this study is a
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Time (ms)

0

5

10

15

20

25

30

35

Volume (mm3)

60.7306

40.7337

34.6178

22.3432

16.8002

8.6853

8.6566

4.5592

Area (mm2)

77.4657

58.9573

54.4218

39.6874

33.7079

21.4855

20.9393

14.7634

Volume Equivalent

Diameter (mm)

4.8768

4.2689

4.0436

3.4945

3.1776

2.5503

2.5475

2.0573

Sauter Diameter

(mm)

4.7038

4.1454

3.8166

3.3779

2.9904

2.4254

2.4805

1.8529

Bubble Velocity

(m/s)

0.1987

0.2473

0.2050

0.2858

0.2455

0.2714

0.1865

Condensing Rate
(m3/s)

3999.3700

1223.1940

2454.9080

1108.6020

1622.9768

5.7538

819.4766

Table 4. Results of the Condensing Bubble (Volume, Area, Diameter, Etc.)

Fig. 16. Sequences of Reconstructed-Bubble 
Motion Over Time



dual-active contour model based on a modification to the
image function on the central-active contour model. The
accuracy of the proposed model and the developed
algorithm was verified through a simulation of imaginary
images and by experiments. The boundary of the obscure
object was easily found by applying the dynamic
threshold value of the proposed model. Reconstruction
with the developed algorithm was confirmed to be very
successful. The results of the simulations and
experiments showed that volume and surface area
calculated with the algorithm exhibited better agreement
with the actual values than did the measured values
obtained using a single-directional image. Furthermore,
three-dimensional images were obtained successfully
from experimental application of the developed

algorithm to a condensed bubble in a subcooled boiling
flow. It is expected that further analysis of images
reconstructed by the developed algorithm will produce
even more accurate bubble parameters such as equivalent
diameter and surface area.

NOMENCLATURE
A triangle area (pixel2)
Arec rectangular area (pixel2)
a x-directional axis length of ellipse (pixels)
b y-directional axis length of ellipse (pixels)
E energy (J)
F force  (N)
h1 energy function coefficient 1 
h2 energy function coefficient 2
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Case Image Processing Volume (mm3) Surface Area (mm2) Photographs

Left bubble: front view

Right bubble: side view

(a) Double 7.509 18.912

Single 7.496 18.527

Ratio 1.001 1.021

Description Similar Similar

(b) Double 31.257 48.661

Single 32.165 49.010

Ratio 0.972 0.993

Description Similar Similar

(c) Double 48.324 71.491

Single 39.155 62.891

Ratio 1.234 1.137

Description Underestimated Underestimated

(d) Double 62.677 82.959

Single 44.539 61.126

Ratio 1.407 1.357

Description Underestimated Underestimated

(e) Double 26.837 45.895

Single 39.264 56.046

Ratio 0.684 0.819

Description Overestimated Overestimated

(f) Double 91.581 102.300

Single 141.885 135.140

Ratio 0.645 0.757

Description Overestimated Overestimated

Table 5. Comparison Between Two Orthogonal Image and Single Image Processing Approaches



IS inner snake (inner contour)
J image contrast 
Jc threshold brightness value
Jw the coefficient defining the magnitude and

direction of image force
m mass density (kg/m3)
N number of points
OS outer snake (outer contour)
R1 the region where gray values are higher
R2 the region where gray values are lower
r distance (pixels)
s parameter variable
ux x directional ratios between the considered point

and the near integer lattice point
uy y directional ratios between the considered point

and the near integer lattice point
W1 resistance to stretching
W2 resistance to bending
x x – coordinate (pixels)
x0 x – coordinate of reference point (pixels)
y y – coordinate (pixels)
y0 y – coordinate of reference point (pixels)
z z – coordinate (pixels)

Greek Letters
damping viscosity factor
threshold value

Subscripts
ext external
i ith position
int internal
img image
rig rigidity
tens tension
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