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1. INTRODUCTION

Heat conduction is usually modeled as a diffusion
process with the governing differential equation identical
in form to that of a neutron diffusion equation under no
absorption, no fission and one speed condition [1, 2]. While
neutron diffusion approximates the neutron transport
phenomena, inversely it is applicable to solve diffusion
problems by transport methods [2]. Based on this idea, a
new Monte Carlo method for solving heat conduction
problems is developed in this paper, which employs the
MCNP code, as MCNP with versatile geometrical capabilities
is widely used as a Monte Carlo particle transport code [3]. 

In the development of this method, a scaling factor is
introduced to make the transport approximation more
diffusive. In addition, analogous to the extrapolation distance
concept in reactor physics [2], a boundary correction is
introduced to improve upon the imaccurate results of the
transport approximation of the diffusion process near the
boundary.

Numerical heat transfer methods such as the finite
difference or finite element are well developed [4, 5], and
Monte Carlo techniques for heat conduction have also been
reported [6-9]. Most of the earlier Monte Carlo methods
for heat conduction are based on discretized mesh systems,
thus they are inherently limited in the geometry treatment.
As in this paper, Fraley et al. uses a “meshless” system
but their study does not give proper treatment to boundary

conditions [9]. The method in this  paper is a “transport
theory approximation” of the heat conduction equation
with a methodical boundary correction. The heat diffusion
is simulated by the particle transport process, and the
temperature or heat flux is given by the statistical values
or tallies in the Monte Carlo method. Thus, this approach
appears limited to the calculation of temperatures at specific
points rather than at the entire temperature field. Shor-
tcomings include long computing time and variance due
to the statistical results. However, it can treat problems with
very complicated geometries such as the heat conduction
in a fuel sphere of a Pebble Bed Modular Reactor (PBMR)
[10].

The heat transfer within a pebble of PBMR is funda-
mental to the thermal analysis of the pebble bed reactor.
The homogenized or effective heat conductivity of the fuel
region could be derived from the volumetric average,
harmonic average, or a combination of these values [11].
The calculation results of the transport approximation
method in this paper indicate that the effective heat
conductivity should be between the volumetric average
and the harmonic average.

2. TRANSPORT THEORY APPROXIMATION TO THE
HEAT CONDUCTION EQUATION 

The steady state differential equation of heat conduction

A new Monte Carlo method for solving heat conduction problems is developed in this study. Differing from other Monte
Carlo methods, it is a transport approximation to the heat diffusion process. The method is meshless and thus can treat problems
with complicated geometry easily. To minimize the boundary effect, a scaling factor is introduced and its effect is analyzed. A set
of problems, particularly the heat transfer in the fuel sphere of PBMR, is calculated by this method and the solutions are
compared with those of an analytical approach.
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for a stationary, isotropic solid is given by [1]

where K( r ) is the thermal conductivity and q ( r ) is the
internal heat source.

The first type of boundary condition is the prescribed
surface temperature:

where rs is on a boundary surface.
If the surface temperature is uniform, the boundary

condition (2) can be transformed to the homogeneous
boundary condition, i.e., zero surface temperature, by
setting T=T( r )-f( rs ) and substituting into Eq. (1), which
does not change the form of the differential equation.

Therefore, the problem to work with is the heat
conduction Eq. (1) and the zero surface-temperature
boundary condition.

On the other hand, the steady state, one-speed
neutron diffusion equation under isotropic scattering, no
absorption, and no fission condition is given by [2]

where represents the neutron flux,Σs is the scattering cross
section, and S is the internal neutron source.

Comparing Eq. (1) and Eq. (3), these two equations
are formally identical. Hence, solving the heat conduction
problem with thermal conductivity K( r ) and source q ( r )
is equivalent to solving the neutron diffusion problem 

with isotropic scattering cross section and the  

internal neutron source S=q . The corresponding boundary
condition is the zero neutron flux on the boundary surface.

The neutron diffusion theory approximates the neutron
transport phenomena; the approximation is valid except
near the boundary [2]. Thus, inversely it is applicable to
simulate the diffusion by transport theory in the interior
region. As to the boundary region, a suitable correction is
needed, as the transport theory is “approximate” to the
diffusion theory near the boundary1.

3. THE TRANSPORT AND DIFFUSION BOUNDARY
CONDITIONS

The zero flux/temperature boundary in the diffusion
does not have an equivalent boundary condition in
transport theory. In a general-purpose, generalized-
geometry, coupled neutron/photon/electron Monte Carlo
transport code such as MCNP [3], the only way to end a
particle history is when the particle leaks out of the
system through a vacuum boundary (no absorption).

The vacuum boundary condition can be approximated
in the neutron diffusion theory by the “zero incoming
partial current”:

Analogously, in heat diffusion (with no incoming
heat flux), the corresponding vacuum boundary condition
can be written as:

It is claimed that the solutions of Eq. (1) with
different boundary conditions, i.e., the zero surface-
temperature and boundary condition (5), differ only by a
constant.

For a one-dimensional homogeneous problem with a
symmetrical temperature distribution, the solution of Eq.
(1) is:

where C is a constant assigned to satisfy the boundary
conditions. Thus, the solutions differ only by a constant.

For general cases, according to the theory of differential
equations, the solution of Eq. (1) is composed by the
homogeneous solution and any particular solution [12]:

The same particular solution can be chosen while the
homogeneous solution is allowed to vary in order to satisfy
the boundary condition, as the homogeneous solution
contains undetermined coefficients. Nevertheless, the homo-
geneous equation of Eq. (1), which gives the homogenous
solution, is precisely the Laplacian equation [13]:

The solution of the Laplacian equation with uniform
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Σs=
3K(r )

1

1Here diffusion refers to both the neutron diffusion and the heat
diffusion, as they are formally identical except for the
absorption term.



boundary conditions is a constant that equals the boundary
value (If the boundary condition Th( rs ) is not uniform, it
is necessary to consider its “extension” in the whole problem
field). Therefore, the solutions with different (but uniform)
boundary conditions differ only by a constant over the
problem field. 

Thus far, the logic is:
First, use a Monte Carlo code such as MCNP to obtain

the solution in the interior region of the heat diffusion
problem with vacuum boundary condition (5).

Second, subtract the MCNP results by a constant to
obtain the desired solution of the heat diffusion problem
with zero surface temperature. This procedure shall be
termed “solution translation”.

However, at this point questions concerning what the
subtracted constant is and how the solution near the
boundary is obtained arise. These issues are addressed in
the subsequent section. 

4. SCALING EFFECT AND BOUNDARY
CORRECTION

One natural candidate of that constant is the boundary
value of the MCNP results that are obtained using the
vacuum boundary condition. However, as stated earlier,
the transport approximation is not accurate for diffusion
theory near the boundary. For this reason, the boundary
value of the MCNP results is unreliable and does not
equal that constant.

Two approaches can be applied to overcome this problem:
(1) Enlarging the valid range of the transport approximation.

Given that the transport approximation is not valid
only near the boundary, if the invalid range is reduced,
data that is more reliable near the boundary can be
obtained. In the extreme, if the invalid range is
reduced until it is close to (or equal to) zero, then all
MCNP results, interior or boundary, would be accurate,
and the boundary value of MCNP results could be used
directly as the constant. 

(2) Making a boundary correction. Now that the transport
approximation is not valid only near the boundary, if
a correction is made near the boundary, then we
would obtain the corrected results near the boundary
as well as the corrected boundary value to be used as
the constant.

These two approaches are illustrated in Fig. 1.
Both approaches are used in the proposed method. In

the first approach, the method to enlarge the valid range
is to reduce the mean free path in the transport calculation.
In reactor physics, it is known that diffusion theory
“yields the proper flux only in the interior of the reactor,
that is, several mean-free paths away from the reactor
boundary [2].” In other words, the invalid range of the
approximation is several mean-free paths. Therefore, by

reducing the mean-free path of the problem, the invalid
range can be reduced.

The heat conduction Eq. (1) can be rewritten as

Although both the thermal conductivity and the
internal heat source are scaled by , the solutions are
identical. is termed “scaling factor”. Additionally, the
relationship between the mean-free path and is:

Therefore, a large gives a small mean-free path, and the
small mean-free path gives a transport approximation range
that is more valid. This is called “scaling effect”.

In another view, if the transport process becomes more
diffusive, the approximation is then more accurate. A small
mean-free path merely increases the diffusivity of the
transport process. However, reducing the mean-free path
will unfortunately lead to long computing time. Therefore,
“optimal” scaling is a compromise of the approximation
accuracy and the computing time.

In the second approach, a boundary correction must be
made. The easiest way to do this is to choose points in the
interior and make a linear extrapolation to the boundary,
as illustrated in Fig. 1. The error induced by the boundary
correction depends on two aspects:
(1) How long the correction needs to cover. Here, shorter

is better. 
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(10)

Fig. 1. Illustration of the Valid range, Invalid Range, the Constant,
and the Two Procedures Described in the Text 



(2) The real temperature distribution near the boundary.
If it is linear, then a linear extrapolation would induce
a relatively small error.

These can be improved greatly by scaling, as a small
mean-free path indicates a short invalid range of transport
approximation, and this short invalid range signifies a short
boundary distance that needs to be corrected. Moreover,
for short distances the real temperature distribution should
show more linearity regardless of its real distribution. This
explains why the boundary correction is always used in
conjunction with scaling.

For the choice of a proper scaling factor and boundary
correction distance, the following problems are tested:
Problem 1: a one-dimensional homogeneous slab, thickness

L=10cm, K=0.5W/(cm K), q =10W/cm3

throughout the slab. One side is reflective; the
other side is kept at a temperature of zero.

Problem 2: a one-dimensional heterogeneous slab, thickness
L=10cm, q =10W/cm3 throughout the slab.
One side is reflective; the other side kept at a
temperature of zero. The heterogeneity comes
from the heat conductivities, as follows:

The Root Mean Squared Error (RMSE) between the
analytical solution and the transport solution (scaled,
boundary corrected and translated) are shown as a function
of the scaling and boundary correction distance in Figs. 2
and 3.

In Figs. 2 and 3, each scaling is represented by the
dimensionless problem size, i.e. L/ . A large dimensionless
size denotes a small mean-free path and large scaling
factor . The zero-boundary-correction distance indicates
that no boundary correction is made. Therefore, in this
case the boundary value of the MCNP results is directly
used as the constant in the solution translation procedure.

In Figs. 2 and 3, if the dimensionless problem size is
scaled by less than 10, the error is comparably large. If the
dimensionless problem size is scaled by more than 20,
the error becomes small. With a problem size larger than
20, the error can be further reduced only slightly while
the computing time increases rapidly.

For each scaling, the minimum error occurs when the
boundary-correction distance is approximately 1 mean-free
path. However, when the scaling factor is very large, each
boundary correction distance results in nearly the same
small error, as in this situation the mean free path is very
small. Thus, for problems in which it is difficult to determine
a boundary correction distance, it is a good practice to

choose a large scaling factor ( 20) and skip the boundary
correction.

From Figs. 2 and 3, it is clear that the problem size in
terms of mean free path should be set between 10 and 20
and that the boundary correction should start from 1 mean
-free path away from the boundary. Thus, the scaling
factor is:

and the boundary correction distance is:
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Fig. 2. RMSE of Each Scaling and Boundary Correction
Distance for the Homogeneous Problem 

Fig. 3. RMSE of Each Scaling and Boundary Correction
Distance for the Heterogeneous Problem 

(11)

(12)



where K0 is the original average heat conductivity, K1 is
the scaled average heat conductivity (for a heterogeneous
problem, the average heat conductivity is used), 1 is the
scaled mean-free path, and L is the problem size (side
length for a rectangle, radius for a sphere, etc.), Here, 
represents the dimensionless problem size and is a number
between 10 and 20. It is suggested that for simple geometry,

be set to 10 and for complex geometry, it be set to 20.
After having obtained the scaling factor, the problem

is scaled such that it can be calculated by MCNP:

where Ki is the original  heat conductivity of each medium
and i is the scaled cross section of that medium. S is the
scaled source.

As a summary, the procedures to solve the diffusion
problem using transport theory are as follows:
Step 1: Choose a scaling factor by (11) and scale up/down

the diffusion problem by (13), (14).
Step 2: Solve the scaled problem by a transport code; in

this case, this is MCNP.
Step 3: Make a linear correction near the boundary according

to (12).
Step 4: Translate the corrected results to satisfy the boundary

condition.

These procedures are illustrated in Fig. 4.

5. CONVECTIVE BOUNDARY CONDITION

Thus far, the fixed-temperature boundary condition
has been considered, but in many cases, it is necessary to
deal with the convective boundary condition. The
boundary surface under consideration transfers heat by
convection according to Newton’s law of cooling to a
surrounding temperature:

where rs is on a boundary surface, represents a
derivative along the outward normal to the surface, K1 is
the thermal conductivity of medium 1, h is the convective
heat transfer coefficient of the convective medium, and
T is the bulk temperature of the convective medium.

The detail of the convection mechanism is fairly
complicated and is represented by the integral coefficient
h. Under certain assumptions, the convective boundary
condition can be transformed into the fixed temperature
boundary condition.

In the following, it is assumed that T is the temperature
at a distance n away from the surface into the convective
medium and that the temperature distribution of n thickness
can be approximated as linear:

This holds everywhere in the added layer with
thickness n.

Eq. (15) can then be rewritten as

Thus, this layer can be regarded as conduction medium
2, with the heat conductivity given by K2=h n [9]. Note
that, in spherical geometry, K2=h n(rs/r ). Eq. (17) is no
more than a continuity expression of heat flux on the
interface. Therefore, the convective boundary condition
is transformed to the fixed temperature (T ) boundary
condition while the boundary surface is extended n
distance.

In the above transformation, in order to guarantee the
linearity of the temperature distribution, the thickness  n
should be as small as possible. Therefore, using a large
scattering cross section s2 for medium 2 (that renders

n small), the linearity of the temperature distribution in
medium 2 can be assured.

However, in terms of transport theory, the thickness
of the added layer in the unit of the mean-free path is:
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Fig. 4. Method for Solving Diffusion Problems Using 

Transport Theory 

.
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Thus, the dimensionless thickness does not depend
on the choice of Δn; in other words, the thickness is always

a constant that is times its mean-free path. For this
reason, the choice of Δn should be insensitive.

To verify the above statement, the following problem
was tested:
Problem 3: a one-dimensional homogeneous slab, thickness
L=10cm, K=0.5W/(cm °K), q =10W/cm3 throughout the
slab. One side is reflective; the other side has the
convective boundary condition of h = 0.1W/cm2 °K, T = 0.
The transport solutions (deep scaled and translated) with
different Δn values as well as the analytical solution are
plotted in Fig. 5.

In Fig. 5, the transport solutions with different added
layer thickness values provide nearly the same solution
close to the analytical result over heat conduction domain
(in the added layer, a linear temperature distribution is
assumed). Thus, transformation of the convective boundary
condition to the fixed-temperature boundary condition
can be done safely, and the thickness of the added layer
can be chosen rather insensitively.

6. NUMERICAL RESULTS

Many calculations were performed; the results for these
are available in [14]. Here, only the calculation results of
the heat transfer in a PBMR fuel sphere are shown. The
problem description can be found in the Appendix .

A Pebble Bed Modular Reactor (PBMR) is a type of
high temperature gas cooled reactor fueled by sphere

pebbles and cooled by helium [10]. The calculation of the
temperature distribution within a fuel pebble is important
in an analysis of the design and safety of these reactors.
However, due to the heterogeneity of the TRISO-particle
distribution in the fuel sphere, prediction of the temperature
distribution will be very difficult. Analytical approaches
would involve homogenization of the fuel. One homo-
genized or effective heat conductivity is the volumetric
average value; another is the harmonic average value. They
give different temperature distributions [15]. Here, the
temperature distribution is calculated “heterogeneously”
by the transport approximation method with the results
compared to analytical solutions based on homogeni-
zation.

For the analytical solution, the volume-averaged heat
conductivity of the fuel region is given by

and the harmonic averaged heat conductivity is given by 

where Vi, Ki are the volume and heat conductivity of
material region i, respectively .

With the averaged heat conductivity and the uniform
heat source distribution, the temperature distribution can
be obtained as a function of the radius:

Assuming T(rs) is the surface temperature of the TRISO-
particle located at the center, the center temperature of
the particle is calculated with this boundary value. This
gives the highest temperature over the pebble.

In the transport calculation, first the convective boundary
condition is transformed to the fixed-temperature boundary
condition by adding a conduction layer with a thickness
of 0.1cm. Second, one TRISO particle is located at the
center and the others are randomly distributed within the
fuel region. The distribution randomness is given by Fine
Lattice Stochastic Modeling (FLS) using a cubic lattice
[16] (see Appendix). Third, =20 is set in Eqs. (11), (12),
and the boundary correction is skipped (as a first-cut
calculation). Fourth, the center temperature of the center
particle is deduced from the surface temperature of the
center particle (radius of the center particle rs=0.039cm).

The transport result is selected as one representative
from many configurations. Although in each calculation
the TRISO-particle distribution differs due to randomness,
the temperature distributions are nearly the same [14].

212 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.39  NO.3  JUNE 2007

SHENTU et al.,   A Monte Carlo Method for Solving Heat Conduction Problems with Complicated Geometry

Fig. 5. Transport Solutions and the Analytical Solution of the
Convective Boundary Condition Problem 

(20)

(21)

(22)

3h
1



The calculation conditions and the results are shown in
Table 1 and Fig. 6 . In Fig. 6, the transport result is between
the “volume-averaged heat conductivity” model result and
the “harmonic-averaged heat conductivity” result. Therefore,
the effective heat conductivity of the fuel region should
be between the volumetric average and the harmonic
average. It is important to note that the volume-averaged
heat conductivity is used in the literature [17], resulting
in an underestimation of the temperature distribution as
compared to the Monte Carlo calculation results in this
study.

7. CONCLUSIONS

The Monte Carlo approximation method has been
described and shown to be appropriate when tested on a type
of heat conduction problem with a prescribed temperature
or convective boundary conditions. In particular, the scaling
effect was analyzed and a boundary correction was proposed,
both of which use the knowledge of the diffusion appro-
ximation of transport theory in reactor physics. The
method is meshless, and thus can be used with problems
with complicated internal geometries easily. For typical

problems, other techniques such as FDM and FEM can
be used to provide direct and fast results; however, there
are problems for which these techniques are not proper or
convenient, such as heat transfer within a PBMR fuel
sphere, which exhibits very complicated geometry. Due
to the capability of handling very complex geometry, the
Monte Carlo method proposed in this paper can be applied
to these types of problems. To demonstrate this, an example
problem with one pebble with many randomly distributed
TRISO-particles was solved. For users who are skilled
with MCNP, the method may be extended and refined to
calculate neutron/heat-coupled problems.

In a future work, an efficient method for temperature
profile calculations (at arbitrary positions, e.g., at the center
point of the pebble) could be developed based on the adjoint
transport problem [18]. In addition, a more robust boundary
correction method and “forced absorption” nonanalog
simulation would be worthwhile future work to pursue.

APPENDIX: DESCRIPTION OF THE HEAT
TRANSFER PROBLEM WITHIN A FUEL PEBBLE

This Appendix provides a description of the heat
transfer problem within a fuel pebble surrounded by
helium coolant. The average power per pebble is 250
MW/2.5/330000 = 303.03 W. It is assumed that each
TRISO-particle produces equal amount of power.
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Fig. 6. Two Different Fuel-mixture Model Results and the
Transport Approximation Result 

Code MCNP5

CPU Intel 3.2GHz

Number of particles 1,000,000

Computing time 388.23 minutes

Standard deviation range 0.585%~0.753%

Table 1. Calculation Conditions of the Pebble Heat Transfer
Problem

Reactor power 250MW

Power peaking factor 2.5

Pebbles 330,000

Particles per pebble 15,000

Helium temperature 1173 K

Table A1. Parameters of PBMR

Medium Radius (cm) K(W/cm K ) or h Note

Kernel 0~0.018 0.0242 In a TRISO particle

Buffer 0.018~0.0275 0.013 In a TRISO particle

Inner PyC 0.0275~0.0315 0.052 In a TRISO particle

SiC 0.0315~0.035 0.178 In a TRISO particle

Outer PyC 0.035~0.039 0.052 In a TRISO particle

Fuel region 0~2.5 - -

Graphite matrix 0~3 0.47 -

Helium - 0.1006 Convection 
coefficient;
W/cm2 K

Table A2. Geometry and Parameters of a Fuel Pebble
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Fig. A1. An X-Y Cross Section View of a Fuel Pebble and Its
Particle Distribution On an Enlarged Plane 


