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Abstract

A computational fluid dynamics (CFD) analysis has been performed to investigate the

turbulent flow and heat transfer in a triangular rod bundle with pitch-to-diameter ratios (P/D) of

1.06 and 1.12. Anisotropic turbulence models predicted the turbulence-driven secondary flow

in a triangular subchannel and the distributions of the time mean velocity and temperature,

showing a significantly improved agreement with the measurements from the linear standard k-

& model. The anisotropic turbulence models predicted the turbulence structure for a rod bundle

with a large P/D fairly well, but could not predict the very high turbulent intensity of the

azimuthal velocity observed in the narrow flow region (gap) for a rod bundle with a small P/D.
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1. Introduction

Most reactor fuel elements generally consist of
rod bundles with coolant flowing axially through
subchannels formed between the rods. The fuel
rods are arranged in either square or equilateral
triangular pitched arrays. An understanding of the
detailed structure of the turbulent flow in the rod
bundle, used especially as nuclear fuel elements, is
of major interest to the nuclear power industry for
safe and reliable plant operation. There have been
many experiments performed on an axially
developed turbulent flow in a bare rod bundle.
Carajilescov and Todreas[1l] provided an
experimental and analytical study of an axial
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turbulent flow in a triangular rod bundle and
Vonka[2] measured the secondary flow in an
interior subchannel of a triangular rod bundle.
Numerous experiments have been comducted on
an axial turbulent flow in a square rod bundle(3-6].
Rehme(6] reviewed the main features of the
turbulence structure in the subchannels of bare rod
bundles as a secondary flow due to turbulence
anisotropy and macroscopic flow pulsation due to a
large eddy motion. Krauss and Meyer|[7] presented
experimental results on the turbulent transport of
momentum and energy in a central channel of 37-
rod heated bundles with a triangular array.

Few computational studies have been performed

on turbulent flow in a red bundle since accurate
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Fig. 1. Large Eddies in a Turbulent Boundary Layer. The Eddies Have Velocities u and the Largest Eddy
Size (I) is Comparable to the Boundary-layer Thickness (L)

prediction is difficult due to the complexity of the
turbulence phenomena. Slagter(8] published the
finite element solution of a bare rod bundle flow
using a one-equation turbulence model. Lee and
Jang[9] and Lemos and Asato[10] provided
numerical simulations of the triangular rod bundie
flow using nonlinear eddy viscosity models. In et
al.[11, 12] investigated the prediction performance
of anisotropic turbulence models for a turbulent
rod-bundle flow using a CFD code. They
compared the predictions of the nonlinear
quadratic k-& models(Speziale[13], Shih et al.[14])
and cubic k-¢ model(Craft et al.[15]), and the
differential Reynolds stress models(RSM) by
Launder-Reece-Rodi(LRR)[16] against those of the
linear k-¢ model(Launder and Spalding[17}). They
reported that the nonlinear quadratic model by
Speziale and the RSM by LRR showed significant
improvements over the other turbulence models.
A numerical simulation of the turbulent flow
structure in the rod bundles is still required to
evaluate the adequacy of the numerical work.

The objective of this paper .is to compare the
CFD predictions of the turbulent heat transfer in a
rod bundle using various turbulence models. The
turbulence models used in this study are the linear
k—¢ model, the nonlinear quadratic k-¢ model by
Speziale and the Reynolds stress models by LRR

and Speziale-Sarkar-Gatski(SSG)[18].

2. Turbulence Model

Most flows occurring in nature and in
engineering applications are turbulent. Turbulent
flow is an eddying motion that exists at high
Reynolds numbers. Turbulence has a wide
spectrum of eddy sizes with a corresponding
spectrum of fluctuation frequencies. Turbulence
has a prevailing rotational motion that can be
thought of as a tangle of vortex elements with
highly unsteady vorticity vectors that are aligned in
all directions (Figure 1). The large eddies have
sizes on the same order of magnitude as the flow
domain, have low frequencies, and are a affected
by the boundaries and the mean flow. The
smallest eddies, on the other hand, are determined
by the viscosity of the fluid and have high
frequency fluctuations. Since turbulence consists of
random fluctuations of the various flow properties,
we use a statistical approach in which all quantities
are expressed as the sum of mean and fluctuating
parts. The time average of the continuity and
Navier-Stokes equations leads to the Reynolds
averaged Navier-Stokes(RANS) equations. The
RANS equations include an additional set of terms,
the Reynolds stresses, which have to be accurately
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represented in terms of known quantities.
Turbulence modeling is required to achieve closure
of the Reynolds stresses by supplementary
transport equations. The closure models range
from the eddy viscosity model to the full second-
order closure models, which represent each
component of the Reynolds stress tensor on the
mean flow.

The linear standard k-& model of Launder and
Spalding{17] uses an eddy viscosity hypothesis for
the turbulence which states that the Reynolds
stresses can be linearly related to the mean
velocity gradients in a manner analogous to the
relationship between the stress and strain tensor in
a laminar Newtonian flow. The transport
equations for the turbulent kinetic energy k and its
dissipation rate ¢ are

6k ok oy,

+pU,—=T1, ~p8+——((,u+u,/c) }1)
P P e T e, Yo,

and

o¢ oe ¢ oU

d de
—+ pU, —=Cy—1,—-Cp—+— (u+ 4/ .
pat+p /axj :IkTu Bx, tpk ax((/l lu a)ax/} (2)

where the Reynolds stress tensor t; and eddy
viscosity u, are defined as

ou, ou, ) 2 (3)
il -2 ks
7y = pUN, ”’(axj ax,J 3P0
2
pcf_ (4)
£

The closure coefficients for the standard k- model
are as follows:

C,=009,C, =1.44,C,,=192,0,=10,0,=13.

The sum of the two terms on the left-hand side
of Eq. (1) indicates the unsteady term and the
convection of k. The first term on the right-hand

side is known as production and represents the
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rate at which kinetic energy is transferred from the
mean flow to the turbulence. The second term,
known as dissipation, is the rate at which
turbulence kinetic energy is converted into thermal
internal energy. The last term is the sum of
molecular and turbulent diffusion, representing the
diffusion of turbulence energy caused by the
natural molecular transport and turbulent
fluctuations. Similarly, the three terms on the
right-hand side of Eq. (2) are generally regarded as
production of dissipation, dissipation of
dissipation, and the sum of molecular diffusion of
dissipation and turbulent transport of dissipation.
In order to mitigote the weakness of the
isotropic eddy viscosity assumption used in the
standard k-¢ model, a nonlinear quadratic
relationship for the Reynolds stresses was

proposed as follows:
- k 1
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and Q, is the rotation rate of the coordinate
system. The empirical coefficients in the quadratic
relationship by Speziale[13] are given as

C, =-0.1512,C,=0.0,C, =0.0 ®

A more complex version of the RANS
turbulence model is a second-order closure model,
which is the Reynolds stress model(RSM). It is
based on exact transport equations for the
individual Reynolds stresses derived from the
Navier-Stokes equations based on the &-equation,
Eq. (2). The exact differential equation describing
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the behavior of the Reynolds-stress tensor t; for
an incompressible fluid is

or; or,
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The four terms on the right-hand side represent
the production tensor, the dissipation tensor, the
pressure-strain correlation tensor, and the
turbulent-transport tensor, respectively. The
production tensor P; is defined as

S/ (10

The pressure-strain correlation tensor ¢ is the
correlation for the slow pressure strain and the
rapid pressure strain. It can be expressed as the
following correlation.

& =8 +9pn (11)
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The closure coefficients proposed by Launder-
Reece-Rodi(LRR) and Speziale-Sarkar-Gatski(SSG)
are respectively given as

C,=022,C, =145,C,, =19,C, =18,C,, =0, 15
C,=00,C, =08,C, =0.0,C,, =0.873,C,, =0.655
C, =022,C, =145C,, =19,C, =1.7,C,, =-1.05,

(16
C,=09,C,=08,C, =065C,, =0625C, =02 (16)

3. Numerical Method

3.1. CFD Model and Boundary Condition

The present study simulated an experimental
study of a turbulent air flow in a central
subchannel of 37-rod heated bundles with a
triangular array (Figure 2) at two different pitch-to-
diameter ratios (P/D=1.06 and P/D=1.12), which
was conducted by Krauss and Meyer{7]. The rod
diameter is 140 mm and the axial length is 6.9 m.
Only the 1/6 triangular central channel of the rod
bundle was modeled using flow symmetry to
reduce the size of the computational model. The
symmetric boundary condition was applied at the
side flow boundaries, including the centerline,
diagonal, and rod-to-rod gap. No-slip and constant
heat flux were set at the rod surface. A uniform
flow was provided at the inlet boundary and a
constant pressure at the exit boundary.

Body-fitted and non-staggered structured grid

max. 1100 N

Fig. 2. A 37-rod Heated Bundle with a Triangular
Array
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Fig. 3. Cross-sectional Meshes for a Central Subchannel of the Triangular Rod Array with a P/D=1.06
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Fig. 4. Grid Test Results: the Effect of the
Number of Radial and Azimuthal Nodes on
the Distributions of Axial Velocity Along
the Diagonal (top) and the Centerline
(bottom)

systems were used to deal with the subchannel
geometry. Figure 3 shows the cross-sectional
meshes of the 1/6 central subchannel for
P/D=1.06 and P/D=1.12. The optimal
computational grids were found to be 15x30x50
for P/D=1.06 and 30x30x100 for P/D=1.12 in
the radial, azimuthal, and axial directions,
respectively. Figure 4 illustrates the effect of the
number of radial and azimuthal nodes showing the
optimal grid of 15x30x50 for P/D=1.06. The grid
size in the non-dimensional wall unit (y*} was
calculated to be 35-70 and 30-37 for P/D=1.06
and P/D=1.12, respectively, which is the closest
distance from the rod surface. The conventional
wall functions using a universal law of the wall
were applied to specify the turbulence in the near-
wall region.

3.2. Numerical Procedure

This study used the commercial CFD codes,
CFX-4.4[19] and CFX-5.6[20], to perform
numerical experiments with various turbulence
models. The nonlinear k-¢ models were
implemented in the commercial CFD code, CFX-
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4.4[19] by direct modifications of the source
routine, since they are not available in the CFX
codes. The SIMPLEC algorithm is used to solve
the velocity-pressure coupling. The SIMPLEC is a
modification of SIMPLE, which differs in its
derivation of the velocity correction equation. The
linearised difference equation for the pressure-
correction is solved by the algebraic multi-grid
method. The second-order finite differencing
scheme was used to discretise the convection
term. lterative calculation with a standard under-
relaxation was used to obtain the converged
solution. The calculation was terminated when the
residual for the mass equation (sum of the absolute
values of the net mass flux into or out of every cell
in the flow field) was less than 0.001% of the total
inlet mass flow rate and the residual reduction

factors for the other governing equations were less

Experiment Standard k-¢

than 10,

The calculations were performed at Reynolds
numbers, based on a bulk mean velocity(Uo) and
hydraulic diameter of 39000 and 65000 for
P/D=1.06 and P/D=1.12, respectively. The
constant wall heat fluxes and the fluid temperature
at the inlet were set at 0.98 kW/m2 and 5.8C for
P/D=1.06, and 1.39 kW/m? and 12.3°C for
P/D=1.12, respectively.

4. Results and Discussions

The predicted distributions of the axial velocity
in a central subchannel are compared with the
measured ones in Figure 5. The standard k-¢
model shows the most rapid decrease of velocity
from the center of the channel to the gap. The
Speziale quadratic k-¢ model and the SSG-RSM

SSG-RSM

Speziale k—¢

Fig. 5. Comparisons of the Velocity Distributions for P/D=1.06(top) and P/D=1.12(bottom)
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SSG-RSM

Speziale k-¢

Fig. 6. Turbulence-driven Secondary Flow for
P/D=1.06(top) and P/D=1.12(bottom)

predicted velocity distributions display an improved
agreement with the measured ones. Similarly, for
the measured velocity distributions, the Speziale
model and SSG-RSM predicted velocity contours
that were remarkably distorted for the gap region.
The center-to-gap velocity ratio can be calculated
as 2.0(Standard), 1.67(Speziale & SSG-RSM), and
1.33(Experiment) for P/D=1.06, and 1.36
(Standard), 1.28(Speziale & SSG-RSM), and
1.26(Experiment) for P/D=1.12, respectively. It is
also noted that the LRR Reynolds stress model
yielded nearly the same predictions as the SSG-
RSM.

Figure 6 illustrates the turbulence-driven
secondary flow predicted by the Speziale model

and SSG-RSM. The secondary flow has been
known to be formed by an anisotropic turbulence.
Hence, the linear standard k-¢ model could not
predict the secondary flow because it is an
isotropic model. The secondary flow, appears to
occur in a symmetric pattern inside the
subchannel, in the direction from the center to the
gap along the centerline and turns back
azimuthally along the rod surface. The maximum
secondary velocity was estimated as 0.01Uo
{Speziale) and 0.007Uo(SSG-RSM) for P/D=1.06,
and 0.007Uo(Speziale) and 0.004Uo(SSG-RSM)
for P/D=1.12, respectively. Therefore the
magnitude of the secondary flow decreases as the
pitch-to-diameter ratio increases.

Figure 7 compares the distributions of the fluid
temperature, showing a larger variation in the
predictions, i.é., a lower temperature in the central
region and a higher one in the gap region, than
the measured ones. The fluid temperature in the
gap region is predicted to be even higher than the
mean temperature of the rod surface(T,,.) for
P/D=1.06. Thre is also a smaller variation of the
fluid temperature for a larger pitch-to-diameter
ratio, i.e., P/D=1.12. The difference between the
prediction and the experiment decreases as the
pitch-to-diameter ratio increases. The anisotropic
turbulence models such as the Speziale k-¢ model
and the SSG-RSM predicted a more accurate
temperature distribution than the standard k-¢
model. The temperature contours by the Speziale
model are more distorted for the gap region than
the other predictions. This appears to be caused
by a higher secondary flow to the gap by the
prediction of Speziale model, as shown in Figure
6. Since the predictions by the LRR-RSM are
almost the same as those by the SSG-RSM, they
are not described separately.

The distributions of the wall shear stress along
the rod surface are compared in Figure 8 against
the experimental results. The Speziale k-¢ model
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Experiment Standard k—¢ Speziale k-¢ SSG-RSM

Fig. 7. Distributions of the Fluid Ten;perature {((TwnrT)/( Ty,m -Te)) for P/D=1.06(top) and
P/D=1.12(bottom)
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Fig. 8. Wall Shear Stress Distributions

and the RSM(SSG & LRR) gave significantly more measured ones. It can be seen that the
accurate predictions than the standard model. discrepancy between the predictions and the
However, the predictions show much large measured ones becomes larger as the pitch-to-
variation in the azimuthal direction than the diameter ratio decreases. This indicates that
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current turbulence models do not appropriately
predict the unique turbulence structure (e.g., high
turbulent mixing) in a very tight rod array. It is also
notfed that the anisotropic turbulence models,
especially the Speziale model, tend to predict a
peak value at about 8=>5 near the diagonal of the
subchannel. This is assumed to occur from
secondary flow recirculating along the diagonal, as
shown in Figure 6.

Figure 9 compares the wall temperature
distributions along the rod surface. The wall
temperatures were predicted to significantly vary
along the rod surface in the azimuthal direction,
i.e., a lower temperature near the diagonal(6=0)
and a higher temperature in the gap(6=30). The
discrepancy between the predictions and the
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Fig. 10. Radial Profiles of the Axial Turbulence
Intensity at the Gap

measurements becomes larger as the pitch-to-
diameter ratio decreases. Again, this is due to the
inadeguacy of the current turbulence model when
modeling a high turbulent mixing in a rod bundle.
However, it can be concluded that the anisotropic
turbulence models show better predictions than
the isotropic standard k-¢ model.

Figure 10 compares the radial profiles of the
axial (streamwise) turbulence intensity at the gap
of the rod bundle. Turbulence intensity for the
standard k-¢ is estimated from the turbulent kinetic
energy, assuming isotropy. The profiles show a
gradual decrease from the rod surface(r,=0.0) to
the center of the gap(r, =1.0). The comparisons
show under-predictions for P/D=1.06, but good
predictions for P/D=1.12. It can be concluded
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that the SSG-RSM predicts the axial turbulence
intensity closest to the measured values. The radial
distributions of the azimuthal turbulence intensity
at the gap are shown in Figure 11. The measured
azimuthal intensity for P/D=1.06 is as high as the
axial intensity in magnitude and is kept almost
constant. The predictions for P/D=1.06 are
significantly lower than the measured ones and
decrease as it moves to the center of the gap.
However, the predictions for P/D=1.12 agree
reasonably well with the measured ones. The
SSG-RSM predicts a higher axial intensity than the
LRR-RSM, but the azimuthal intensity is similar to
the LRR-RSM. It is also noted that the Speziale k-¢
mode! predicts a lower axial intensity and a higher

azimuthal intensity than the Reynolds stress
models.

5. Conclusions

A numerical experiment using a CFD method
analysis has been performed to investigate the
turbulent flow and heat transfer in a triangular rod
bundle with pitch-to-diameter ratios of 1.06 and
1.12. CFD predictions using various turbulence
models were compared with the experimental
results for the rod bundle and the conclusions can
be summarized as follows;

1) The anisotropic turbulence models predicted the
turbulence-driven secondary flow in the
triangular subchannel and the distributions of
the time mean velocity and temperature,
showing a significantly improved agreement
with measurements from the standard k-¢
model.

2) The SSG Reynolds stress model predicted the
turbulence intensities as well as the wall shear
stress and the wall temperature which are the
closest to the experiment results.

3) A large discrepancy between the CFD result
and the experiment is observed for the rod
bundle with a smaller pitch-to-diameter ratio.

4) A new turbulence model should be developed to
more accurately predict the turbulence structure
in a rod bundle.

Nomenclature

I Normalized distance from the wall
(dimensionless)

T Fluid temperature (K)

Te Bulk mean fluid temperature (K)

Ten  Inlet temperature (K)

T, Wall temperature (K)

Tum Mean wall temperature (K)

T.n Mean friction temperature (K)
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U Velocity of mean flow (m s™)

Ue Local friction velocity (m s™)

u’ Axial turbulence intensity (m s
w Azimuthal turbulence intensity (m s™)
Greek

é Kronecker delta

U Dynamic viscosity (m® s?)

0 Fluid density (kg m?)

o Turbulent Prandtl number

T Reynolds stress tensor (N m?)
Twm Mean wall shear stress (N m®)
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