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Abstract

In this paper, a preliminary study for development of a fault diagnosis is presented for

monitoring and diagnosing faults in the agitator driving system of a high temperature reduction
reactor. In order to identify a fault occurrence and classify the fault cause, vibration signals
measured by accelerometers on the outer shroud of the agitator driving system are firstly
decomposed by wavelet transform (WT) and the features corresponding to each fault type are
extracted. For the diagnosis, the fuzzy ARTMAP is employed and thereby, based on the
features extracted from the WT, the robust fault classifier can be implemented with a very short
training time - a single training epoch and a single learning iteration is sufficient for training the
fault classifier. The test results demonstrate satisfactory classification for the faults pre-
categorized from considerations of possible occurrence during experiments on a small-scale
reduction reactor.

Key Words : agitator driving system, vibration signals, wavelet transform, feature extraction,

fuzzy ARTMAP

1. Introduction

The objective of this research is the detection of
an abnormal status of the agitator driving system
in a high temperature reduction reactor in order to
increase operational performance. Otherwise, the
abnormal rotations may induce improper
reduction reactions and also may interfere severely
with the other monitoring system for reduction
reactor integrity [1]. From this diagnosis result, the

454

operator can recognize the integrity of the agitator
driving system and might set up a schedule for
repair or maintenance between operations.

In the high temperature reduction reactor, the
metal reduction for nuclear spent oxide fuel takes
place using a very reactive chemical de-oxidizer
under a high temperature of 650°C. Fig.1 depicts
the full-scale high temperature reduction reactor
that was constructed last year but is not fully
operational yet. The full-scale reduction reactor



Fault Diagnosis for Agitator Driving System in a --- G. Y. Park, et al 455

Fig. 1 Full-Scale Reduction Reactor
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Fig. 2 Configuration of Reduction Reactor

has the dimension of 2.4 (H) x 1.7 (ID) m. Fig.2
shows the schematic of the configuration of the
reduction reactor and the installation of the main
components. The agitator driving system is

composed of magnetic driver and agitator. In

Fig.2, two magnetic drivers are installed on the
top of the reduction reactor. Between those
magnetic drivers is the needle valve operating
equipment. At the temperature of 650°C, the
reaction-supporting salt begins to melt down and,
at that time, the agitator driving system is actuated
for efficient chemical reactions. As the agitator
driving system is installed on the top of the
thermal reduction reactor, about half of the
rotating axis and the agitator are immersed in the
high-temperature molten salt. The magnetic driver
is actuated by the motor, installed on the side of
the reduction reactor as can be seen in Fig.2,
whose rotating axis is arranged in a parallel
direction to that of the magnetic driver. Both axes
are inter-connected by flexible joint cable that
bends in the upper half circle.

In the preliminary reduction experiments using
uranium oxide powder, which commenced in
2001, on the small-scale reduction reactor that is
an one-fifth scale of the full-scale reactor and on
which the single agitator driving system with a
smaller power capacity was installed, the power
transmission via the flexible joint cable produced
large vibrations in the structure. And, for a series
of operations, this induced a loosening of the
surrounding bolts. During the reduction operation
at 650°C, the fumes generated within the reactor
propagated through the internal space of the
magnetic driver but the outer sealing mechanism
of the magnetic driver prevented the fumes from
leaking into the environment. After the shut down
of the reduction reactor, the cooling down to the
ambient temperature resulted in the accumulation
of fumes in the clearance between the rotating
axis and the outer ring, and this made the agitator
driving system rotate intermittently with a sudden
impact-like vibrations in the next operation.
Moreover, the bearing in the outer case of the
magnetic driver was sometimes exposed to the

fumes emanating from the sample hole during
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sampling of the salt, which resulted in the
corrosion and wear of the bearings in the
magnetic driver,

All the faults described above were witnessed
independently in the preliminary experiments on
the small-scale reduction reactor but not observed
yet in the full-scale reduction reactor because only
a few test operations have been performed while
many experiments have been performed on the
small-scale reduction reactor. These faults increase
significantly the burden of regulating the rotating
speed of the agitator to the pre-set point, 200
rpm, for the optimal reduction reaction and
interfere severely with the other fault monitoring
technique incorporated with the acoustic emission
method [1)[2]. In order to develop the diagnosis
technique that recognizes fault occurrence and its
cause, an experimental facility of the agitator
driving system was constructed. This technique is
based on the vibration signals measured by two
accelerometers on the outer shroud of the

magnetic driver.
2. Experimental Setup

For the acquisition of the vibration signals, a
small-scale experimental facility for the agitator
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driving system was constructed. Fig.3 shows the
experimental facility. The experimental setup is a
mock-up of the small-scale reduction reactor in
which the configuration of the agitator driving
system is almost the same as that of the full-scale
reactor.

Fig.4(a) and Fig.4(b) show the magnetic driver
manufactured and each component after it was
dismantled, respectively. The magnetic driver in
the agitator driving system has a magnetic pulley
installed within the outer case and a magnetic
rotor on the top of the rotating axis. The magnetic
pulley rotates with the flexible joint cable and this
rotation induces the actuation of the magnetic
rotor by a magnetic force that allows the
maximum torque of 6kgf-cm of the agitator
attached at the bottom end of the rotating axis.
The magnetic driver is installed on the top of the
reduction reactor and has a supporting plate that
supports the magnetic driver, tightening the joint
part between the flexible cable end and the
magnetic pulley. The supporting plate is
connected to the outer shroud of the magnetic
driver by two upper and lower bolts.
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In the experiments, as the measuring elements,
two accelerometers and two proximity sensors
were installed on the agitator driving system. As
can be seen in Fig.3, one accelerometer was
attached to the top of the outer case of the
magnetic driver and the other to the outer shroud
enclosing the rotating axis. Two proximity sensors
were installed on the outer shroud, penetrating
through the outer shroud, about 2 mm away from
the rotating axis within the outer shroud and
arranged about 45° apart from each other. For
proximity sensors, though installed and used in
this experiment, we discarded the values of these
sensors because there existed the possibility of the
sealing problem due to the penetration of the
proximity sensors through the outer shroud and
the deposition of the fumes on each sensing end
of the proximity sensors when they are
implemented in the reduction reactor. The fact
that none of the revolution measurements could
be used made the data acquisition system never
achieve the synchronous data acquisition where
one data block exactly corresponds to single
revolution of the rotating axis. This fact induced a
severe restriction on the application of various
methods to the feature extraction as mentioned in
a later section. Moreover, between both
accelerometers, the vibration signals from the
accelerometer #2 as in Fig.3 was used in the
signal analysis because it was found that this
sensor was generally more sensitive to all the fault
types.

In order to measure and analyze the vibration
signals, a portable data acquisition system was
constructed as shown in the upper-right part of
Fig.3. The data acquisition system comprises of a
digital signal processing board with various
software-selectable sampling rates, signal
conditioning modules, a main processing unit, and
peripherals. The signal conditioning modules can
accommodate 4 channels for the accelerometers

and 2 channels for the proximity sensors. The
signal conditioning modules for the accelerometers
provide the anti-aliasing filter with 4 levels of cut-
off frequency: 1, 5, 10, and 20 kHz. The
accelerometers are charge-type and the effective
frequency range is from 1 Hz to 10 kHz.

3. Data Acquisition for Fault Types

For the agitator driving system, the faults are
classified grossly into three types: the looseness of
tighteners, the bearing defects, and the clearance
blocking. This classification is deduced from the
observations of the occurrence of faults during the
experiments with the small-scale reduction reactor.
For the looseness, there are four bolts on the
supporting plate and therefore, there are many
cases for fault classification related to the
looseness. In the experiments of the small-scale
reduction reactor, the vibration forces by the non-
rigid rotations of the flexible cable affected more
severely the upper bolts than the lower bolts and
hence, the looseness was mainly observed at the
upper bolts. Thus, for the simplicity in presenting
the results, the looseness of the two upper bolts is
only considered. The looseness features of both
the left and right bolts are same and these effects
are combined into a single category. The fault
types categorized are presented in Table 1.

In the conventional monitoring/diagnosis
techniques for the rotary machines, the

Table 1. Fault Types Categorized

Fault Type Contents
Case 1 Normal Rotation
Case 2 Looseness of One of Upper Bolts
Case 3 Looseness of Upper Bolts
Case 4 Bearing Defects
Case 5 Clearance Blocking
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synchronization between the revolution of rotating
axis and the data acquisition is very important for
delicate analysis and identification of an incipient
fault. For the agitator driving system in the high
temperature reduction reactor, there is no way to
achieve synchronization because motors and
magnetic drivers constructed in the high
temperature reduction process are not provided
with any revolution measuring unit and it is not
reasonable to install additional rotation-measuring
sensors because of the sealing preblem. Moreover,
the motor has no feedback controller that
regulates strictly the rotation speed to the
predesignated value of 200 rpm and hence, the
rotation speed is actually fluctuating around 200
rpm during the operation, which prohibits the
setting of a proper sampling rate of the data
acquisition system for the synchronization. As a
result, it is impossible to synchronize the data
acquisition and the revolution of the rotating axis
in this facility.

The sampling rate is set to 25.6 kHz, which is
very much higher than the maximum frequency of
the agitator axis rotations but is necessary to
include the frequency components of the transient
signals by a fault or the flexible joint cable. The
rotation speed is fluctuated with a maximum
deviation +20 rpm from the set-point speed. The
number of samples in the data block is set by
16384 enough for encompassing sufficiently the
signals per revolution under the speed fluctuations
from 180 to 220 rpm. Through the experiments,
the vibration signals for various set-point speeds
from 80 to 800 rpm and for various faults were
measured and analyzed. In this paper, among all
experimental data, the data measured at the set-
point speed of 200 rpm are used in the diagnosis
procedure because this rotation speed of 200 rpm
is a set point value employed in reduction reactor
operations.
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Magnitude (dB)

T T T T
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Fig. 5. Averaged Power Spectrum of FFT for 5
Types of Faults

4, Configuration of Diagnosis System

With the acquired data blocks, the FFT (Fast
Fourier Transform} method is applied to the
analysis of signals for pre-defined fault types. Fig.5
shows the power spectrum of 5 different cases by
the FFT with 8 averages of FFT results for
eliminating highly fluctuating components in each
spectrum. As can be seen in Fig.5, some faults
such as the clearance blocking and the bearing
defects show slightly different trends from the
normal rotation but it is not easy to ideniify the
distinguishable peaks representing the
corresponding fault.

In order to overcome the limitation of the
conventional signal analysis method, a fault
diagnosis system for the agitator driving system is
developed and its configuration is depicted in
Fig.6. The data blocks of vibration signals are
stored in the data acquisition system and, after the
data storage is completed, these data blocks are
transferred to the wavelet transform (WT) as input
data. The WT decomposes these signals into the
time- and scale-domain signals and the features
are extracted from the signals across the scale.
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The fault diagnosis is performed by use of the
fuzzy ARTMAP based on the features extracted.
The fuzzy ARTMAP should be trained before
performing fault diagnosis or classification. The
learning speed and the training time of the fuzzy
ARTMAP are much faster than that of any other
artificial neural network architecture for

classification.

5. Brief Description on the Wavelet
Transform

Let Ls(R) denote the Hilbert space that is the set
of square integrable functions. Then, the

continuous wavelet transform of a function fe&
Lx(R) is defined by {3]{4]

W(a,b) = [ f(twy,,(t) dt. (1)

In Eq.(1), W represents the wavelet
transformation and the superscript * means the
complex conjugation. y,, is the wavelet
represented as

\pa’b(t)-—-jl_a—\y(?], for (a, b)eR? and a>0,(2)

where, y(t) is a fixed function called the mother
wavelet. The parameter a is a scaling factor and it
stretches or compresses the mother wavelet .
The parameter b is a translation along the time
axis. It simply shifts a wavelet, i.e., it delays and

advances the time at which it is activated. The
factor 4a ensures that the functions y,, have a
constant norm in the space Ly(R). The scaling
operation on the mother wavelet enables the
wavelets to capture the different frequency
components of the function to be analyzed. The
translation operations shift the mother wavelet in
the time axis in order to capture local time
information of the function. The wavelets
produced by Eq.(2) thus provide the analysis of the
function at different times and at different scales
(or, roughly, frequencies).

The Fourier transform (FT) is the most frequently
used method in signal processing and analysis. If
we are given a single frequency signal ', the FT
will isolate a peak at the frequency ®. However,
when confronted with the case of a signal built of
two single frequencies occurring at two adjacent
intervals, we obtain two peaks without [ocalization
of time. The resolution in the frequency domain
can shrink to one isolation point but the time
domain resolution is the entire range. One of the
tools for localization both in time and frequency is
the short-time FT. In this representation, one has
to fix both the localization levels of time and
frequency. Wavelets offer a different compromise:
the frequency localization is logarithmic, i.e.,
proportional to the frequency level and the time
localization gets finer in higher frequencies.

From the WT, the function f{t) can be
reconstructed by

f®=C; [ LW(a,b)w,,b(t)dbg;. 3)

And, in order for Eq.(3) to be valid, the
wavelet must satisfy the following admissibility
condition (3}

_rlY@fF
Co= =g 5= @

where V¥ is the FT of the wavelet y. Note that the
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condition Eq.(4) implies that ¥(0) = O so that y is
a basically oscillating function, i.e., fydt = 0.
More generally, one can design y to have

4" (o)
do*

=0=[thy(t)dt, fork=1,--N. (5)
=0

An important consequence of making y have
the property of Eq.(5) is that the values of W(a,b)
are almost influenced by the regularity of the
function. In the continuous WT, the parameters (a,
b) are varied continuously. For implementation,
the continuous WT should be computed on a
discrete grid of points such as {ay", mag"by) with (n,
m) & 72, and this makes Eq.(2) become

~n/2

V.o =a, \u(a;“t —bom), for ag> 0, by = 0.
This means the sampling of the continuous WT
is represented by

Wen,m) = [ £y, (1) dt.

In order to preserve the information of f{t} in the
samples of the continuous WT, one should over-
sample the continuous WT on a very dense grid,
which requires considerable computational efforts.
By adding restrictions on the parameter a; such
that this parameter should have values determined
by the powers of 2, i.e., dyadic values and also by
the choice of the orthonormal wavelet, it is
possible to remove redundancy and to construct a
fast and efficient algorithm. In this case, the
wavelets are represented as, by setting a,=2 and
by=1,

v, () =272yt k), for Gl)eZ?.  (6)

The WT by use of Eq.{(6) is called the discrete
wavelet transform (DWT). For discrete time
sequences, the WT decomposes the sequences by
using the octave-band filter banks when the dyadic

and orthonormal wavelets are employed. The fast
and efficient algorithms for the WT of discrete
samples have been proposed [5][6].

5.1. Signal Decomposition by Wavelet
Transform

For the agitator driving system to be monitored
and diagnosed, the vibration signals are
decomposed into the octave band components by
the DWT. The wavelet used in this decomposition
is the so-called ‘db-10" wavelet proposed by
Daubechies [3]. In the db-10 wavelet, both low-
pass and high-pass FIR filters have 20 filter
coefficients. This requires more calculations but
the sharp attenuation at the cut-off frequency of
each octave-band filter can be achieved.

Fig.7(a} through Fig.7(e) show the results of the
wavelet decomposition of the five types of faults.
The data block is decomposed into 8 scale levels,
which results in 8 details and 1 approximation.
The term ‘detail’ means, roughly speaking, that a
data block with a certain frequency range is
decomposed into the signals whose frequency
components are above half of the frequency range
of a data block. The decomposed signals below
the half frequency range are called the
‘approximation’ . In Figs.(7), the original data is
displayed in the top-left graph and the other
graphs are the decomposed signals. The signal
with the highest frequency range is depicted in the
bottom-right graph as indicated by ‘Detail 1'. As
the number of Detail increases, the signal contains
lower and lower frequency components and, in the
top-right graph marked as ‘Approximation’ , the
lowest frequency components are contained in the
signal.

As can be seen in Fig.7(a) to Fig.7{e), the
decomposed signals show different characteristics
for corresponding faults but it is very difficult to
evaluate those differences compactly and
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systematically from the decomposed signals by the
WT. ltis desired, therefore, that the features in the
decomposed signals for a type of fault be extracted
in such a way that the features are compact
enough and represent efficiently the information
of the fault type.

6. Feature Extraction

Based on the results of the wavelet
decomposition for the vibration signals, the
appropriate and compressed features are
extracted. The feature extraction has been
performed by use of various methods such as AR
modeling, principal component analysis by an
artificial neural network, etc. All those methods
have not produced a good and consistent feature
extraction for a type of fault because the data

blocks for any type of fault are not synchronized.
Thus, in this paper, a simple method is
employed for feature extraction. The feature
values for eight details and one approximation for
a type of fault are obtained by calculating the
average power for each detail and approximation

signals, and this is represented by

N-1

F,=31d,, [P /N, forj=1,2,J,and
i=0

N-1
F,= Zl a;; [*/N,

i=0

where F, represents the feature value at the scale
level of j, d; is the value of the wavelet transform
or decomposed signal at the scale level of j and at
the position i, a,, is the value of the approximation
at the scale level of J and at the position i, N
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represents the total number of a data block (N =
16384), and J is the maximum scale level (J = 8).
For the display on the graph, the feature vector V;
is defined by

Ve =[VE1, =, VEsui] .
= [log(F+1), log(Fy), log(Fy.), -, log(Fy)). 7
In the displays shown below, the feature values
are plotted in the order of the components array
as in Eq.(7). Fig.8 shows the results of the
feature extraction by the average power
calculation. As can be seen in Fig.8, a fault can
be discriminated from the others when one
inspects carefully the trend and characteristics of
the feature values. In order to demonstrate the
consistent trend of the feature vectors for a fault
type, Fig.9(a) through Fig.9(e) show the features
extracted from some, further acquired, data
blocks. As can be seen in Figs.9, the features of
further data blocks for a corresponding fault
show a consistent trend that can be
differentiated from the feature trends of the
other faults. As a matter of fact, this method can
also be applied to the results of FFT but the
features from the wavelet transform are more
distinguishable than that from FFT.
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Fig. 9(d). Features from WT for Case 4 Data
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Fig. 9(e). Features from WT for Case 5 Data
Blocks for Test

7. Diagnosis

For the diagnosis based on the features extracted
from the average power calculation, the neural
network classifier based on the adaptive resonance
theory (ART) [7], which is called the fuzzy
ARTMAP [8] in neural network literatures, is

constructed.
7-1. Description of Fuzzy ARTMAP

The ART has the architecture where a new
feature vector is learned without modifying the

Map Licld |&

we | ] - €

Fuzzy ART, Fuzzy ART,

M

Fig. 10. Configuration of Fuzzy ARTMAP

o

Ky

existing information for different features. Hence,
it can preserve the previously learned knowledge
while continuing to learn new things. The fuzzy
ARTMAP is a class of artificial neural networks
that perform incremental supervised learning of
recognition categories and multidimensional maps
in response to input vectors presented in arbitrary
order. Fig.10 shows the architecture of the fuzzy
ARTMAP where two fuzzy ART modules (ART,
and ART,) and a map field F** are involved.

The input vectors A of dimension M, and B of
dimension M, are the feature vectors respectively
corresponding to the symptom and the cause. The
components of each input vector are analog or
binary values within the range of [0,1]. Each
component of the input vector represents a
feature value or a feature item that is grouped to
establish the representative feature vector. Thus
the analog value of each component of the input
vector means the degree of belongingness to the
corresponding feature item, and this is similar to
the fuzzy membership value. Given the input
vectors A and B, the overall operations of the
fuzzy ARTMAP are described below.

When input vectors are given, the input vector
A (or B) is transferred to the F¢® (F?) layer where
the complement coding is performed based on the
input vector. In the Fy* layer of Fig.10, A° means
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the complement of A, that is, at ith component of
A, Af =1 - A fori =1, ,M, By the
complement coding, the dimension of the input
vector I increases by 2M, and the magnitude of
the complement-coded input vector I is always
constant to M, regardless of the input vector A.
This complement coding is important in the fuzzy
ART architecture because it prevents the so-called
category proliferation due to the decrease of the
weight vector W} [9]. The W} is an 1 x 2M, vector
such that W7 = [W,*, --- W, 2u,7] and the subscript j
represents jth node at the F;* layer. All initial
values of W} are set to 1. After complement
coding, PP is presented to the input terminal of the
F}® layer and this becomes x*. This interim product
X’ is fed up to the F,* layer through the weight
vector W} for j = 1,.--N,, where N, is the total
number of the nodes in the F,® layer.

For the input vector I’ and a node j at the F,*
layer, the choice function, T}, is defined by

Ti(I®) = | FAW;® [/(a+W;?)), forj = 1,-N,. (8)

In Eq.(8), a is called the conservative parameter
that has a very small value. And, for M dimensional
vectors p and q, p Aq = {min{p, q): for vi } and
Ipl = Z."!p/l. Among the values of T, (j =
1,...N.), the winning node indexed by J is selected
by T, = max{T;: j = 1,...,N,}. The output vector ¢
is obtained by setting all the components of ¥* to
zero but Jth component given to one. Then, this
output vector y* goes down to the F;® layer where x°
now becomes X* =P A WS,
If the following condition is satisfied,

=AW |2p,| P, (9)

then it is said the resonance state occurs and the
learning is performed by

Wyi(new)=B(I*FAWy*(old))+(1-B) Wy*(old). |

In Eq.(10), B is a constant ‘n the range of [0,1]
and p, in Eq.(9) is called the vigilance parameter
having a value of 0~1. Initially, p, is set to an
arbitrary low value, p,**. If the condition in Eq.{9)
is not satisfied, the reset operation occurs in such
a way that the value of y,° is set to zero and Jth
node of the F;* layer is prohibited from being the
winning node for further presentation of the input
vector I°. And the input vector I is presented
again and the calculations described above are
iterated until the resonance state occurs. The
operations of the fuzzy ART,, when the input
vector B is given and the number of the output
node is set to N,, are the same as in the fuzzy
ART.. The wining node at the F.° layer is indexed
by K.

The map field F** is activated whenever one of
the fuzzy ART modules (fuzzy ART, and ART,} is in
the resonance state. If a node J of the F;* layer is
chosen at the resonance state of the fuzzy ART,,
then weight W/ (Wy®° = [W,,®, --- W, ")) activates
the map field F*. If the fuzzy ART, is active, i.e., in
the resonance state, at a node K of the F,’ layer,
then the node K in the F** is activated by one-to-
one pathways between F,” and F*. If both fuzzy
ART, and ART, are active, then the F* becomes
active only if the fuzzy ART, predicts the same
category as the fuzzy ART, via the weight vector

2 (that is, W, +0). The output vector x** at the
map field F* is calculated by

Y AW  Flactive ,Fyactive
o = W Flactive ,Flinactive
y® Flinactive ,Fracti.:
0 Fjinactive ,Finactiv~

With the values of x* for both layers F;* and F,°
active, if the following condition is satisfied,

x| = pasly”l, (11)

then, the mapping or prediction procedure is
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completed. If the condition Eq.(11) is not satisfied,
the vigilance parameter p, in the fuzzy ART, is
increased from p,”* by a small value in order for
I, A W1 < p,IPI to occur, which ultimately
leads to activation of another F,” node J satisfying
Eq.(9) and Eq.(11) for the input vector I°.

Initially, all components in W (for j = 1,--+N,)
are set to 1. When F;° node J and F," node K are
active under the training phase, then W, ® = 1
and W;,® = 0 (for k = 1,---,N, and k#K). When
the training for particular input vectors A and B is
completed, the fuzzy ARTMAP configures the
weight vectors, W2, W,°, and W™. For another
input presentation, the fuzzy ARTMAP assigns
other winning nodes J and K at F5* and F,° layers,
respectively, and stores the characteristics of both
input vectors on the weight vectors W and W,
and matches the information from both the F;?
and F;° layers by adjusting the weight vector W
at the map field F*".

After the training phase is finished, the
classification test may start. At the test phase, the
only input vector A’ is given to the Fy® layer and
then, the fuzzy ARTMAP goes to the fuzzy ART,,
through the Jth winning node in the F,? layer and
the map field. The resonance state in the fuzzy
ART, always occurs in the test phase whenever
some triggering value comes from the map field.
Through the already configured W,°, the triggering
value from the map field goes down to the Fy’
layer where some nodes become the active state
having a non-zero value. Eliminating the
complement-coded nodes in the F;" layer results in
the activated node(s) representing obviously the
fault type in our case.

7.2. Diagnosis Test

For training and testing the fuzzy ARTMAP for
diagnosing the agitator driving system, the five
types of data sets are acquired. These data sets are

Table 2. Data Sets and Configuration of Fuzzy
ARTMAP

¢ Data Set : 5 Sets
- Case 1 (Normal Rotation): 1 Set
- Case 2 {One Upper Bolt Looseness): 1 Set
- Case 3 {Upper Bolts Looseness): 1 Set
- Case 4 (Bearing Defect): 1 Set
- Case 5 (Clearance Blocking): 1 Set

Training
Data Sets

+ Data Set : 22 Sets
- Case 1 (Normal Rotation): 7 Sets
Test - Case 2 (One Upper Bolt Looseness):4 Sets

Data Sets | - Case 3 (Upper Bolts Looseness): 3 Sets
- Case 4 (Bearing Defect): 4 Sets
- Case 5 (Clearance Blocking): 4 Sets
« Off-Line Leaming, Single Input

L Presentation, and Single Learning Iteration
Training
Tupe & «Fastleam: B =1
P « Conservative Limit Value: o = 0.0001
Parameters

« Vigilance and Matching Criterion:
pa=0.8, p,=08 and p,, = 0.8

measured when the corresponding fault is
introduced intentionally in the experimental
facility. For off-line training of the fuzzy ARTMAP,
one data block for each fault is selected and the
total training data are 5 sets as presented in Table
2. Fig.8 also shows the feature vectors of the
selected training data set. The remaining data sets
are used to test the fuzzy ARTMAP diagnosis
performance. Total test data are 22 sets and the
number of data blocks for each fault type is given
in Table 2. Fig.9(a) to Fig.9(e) show the feature
vectors of all the fault types used in the test phase.
In the training phase, the training data pairs for
each fault are presented just once to both input
ports of the fuzzy ARTMAP and the single
learning iteration is selected. The parameters in
the fuzzy ARTMAP are given in Table 2 with short
descriptions of the parameters.

Since the input vector A for the fuzzy ART, is
the feature values, the input vector A has a
dimension of M, = 9. All input vectors for the
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Fig.11. Information on Wja of Fuzzy ARTMAP

fuzzy ART, are normalized into [0,1] by a constant
value of 4.7. The input vector B for the fuzzy
ART, contains the binary values with a single ‘1’
that represents a specific fault occurrence and has
a dimension of M, = 6.

After the training, the information established
on the weight vector W is shown in Fig.11. Table
3 shows the constructed weight vector W,® of the
fuzzy ART, where the row indexes the nodes in
the Fy® layer and the column represents only the
activated or winning nodes in the F;° layer. The
values in W, for a node k, actually, are the same as
the input values in I’ that represent a fault type,

i.e., atthe nodek = 1, W,"=[1,0,0,0,0,0,1,1,1,1]
represents the fault type of Case 1. The weight
vector W™ becomes, in this case, a 5x 5 identity
matrix with j-indexed rows and k-indexed columns.

The learning time for the fuzzy ARTMAP at the
training phase is extremely short because of the
single learning iteration {B=1) and the single
training epoch. After the training phase, the fuzzy
ARTMAP shows the perfect classification for the
training data set when the same input vectors are
presented at the test mode.

For the test data sets, the fuzzy ARTMAP shows
the correct fault identification performance for all
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Table 3. The Information of W,*

W 1|2|3|4(516]|7|8|9]|10
Node k
1 1]0{0;0]0|0|1]1]1}1
2 0f110j0j0{1(0}1(1]1
3 0(0111010{111({0]1]1
4 0j0y011y0j1(111]0]1
5 0|0j0]0j1j1(21]1;1(0

the fault types though some test data have a little
distorted trend as can be seen in Figs.9.

8. Conclusions and Further Research

In this paper, a fault monitoring technique is
presented in order for monitoring and diagnosing
the status of the agitator driving system in the high
temperature reduction reactor. Due to the high-
temperature chemical reduction reaction, the
agitator driving system has the faults of clearance
blocking and bearing defects by the fumes. And it
has the faults of the loosening of some bolts by the
non-rigid rotation transmission of the flexible joint
cable. The faults in the agitator driving system
affect the chemical reduction reaction and also
interfere severely with the other fault monitoring
technique incorporated with the acoustic emission
method. In order to recognize the fault occurrence
and the cause of that fault, a fault monitoring
technique for the agitator driving system was
developed. In order to identify the occurrence of a
specific fault, the vibration signals for the
corresponding fault are acquired and analyzed by
wavelet decomposition. To extract the feature
from the result of the wavelet decomposition, the
average power calculation for each decomposed
signal was employed.

For the diagnosis procedure based on the
features, the neural network classifier based on the

adaptive resonance theory, which is the Fuzzy

ARTMAP, was constructed. The tests on the
various fault signals including the normal operating
signal show the perfect classification performance
of the Fuzzy ARTMAP though the features of the
experimental data from the same fault are varied
or distorted.

Currently, the technique developed in this paper
is being implemented into the data acquisition
system for on line diagnosis and will be applied to
the full-scale reduction reactor. In the real
implementation, all cases for the looseness of the
tighteners are to be combined into a single case,
just differentiating this case from the other cases
of the normal rotation, bearing defects, and
clearance blocking. And all relevant works for
acquiring the information of all the looseness cases
are now being performed. As a further study, the
analysis of multiple faults occurrence is to be
considered when combined faults are generated in
the further operations of the full-scale reduction
reactor, though not observed up to this time. A
delicate method for identifying the degradation
level of a fault is supposed to be required and will
be pursued in the further study.
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