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Abstract

Nodal transport methods are studied for the soluticn of two dimensional discrete-ordinates,
simplified even-parity transport equation(SEP) which is known to be an approximation to the
true transport equation. The polynomial expansion nodal method(PEN) and the analytic
function expansion nodal method(AFEN) which have been developed for the diffusion theory
are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that
while the PEN method in diffusion theory can directly be converted without complication, the
AFEN method requires a theoretical modification due to the nonhomogeneous property of the
transport equation. The numerical results show that the proposed two methods work well with
the SEP transport equation with higher accuracies compared with the conventional finite

difference method.
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1. Introduction

Nodal methods have been extremely successful in
the solution of the neutron diffusion equation.[1]
To achieve the same success in the transport
theory many people have applied the various
kinds of nodal methods increasingly to the neutron
transport equation, mainly with the first-order
Boltzmann transport equation. Recently, the
simplified even-parity equation(SEP) has emerged
as an approximation to the second-order even-
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parity equation(EP} which is the other type of the
transport equation.[2,3] The SEP gives more
robust solution and turned out to be more efficient
to computationally solve than the regular EP
equation due to the reduction in angular domain
by another half, directionally uncoupled reflective
boundary conditions, simple diffusion operator in
each discrete direction, etc.. Most importantly
regarding this study, the elliptic operator of SEP is
the same as that of the diffusion equation, so it will

be easier to implement the conventional nodal
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diffusion methods into SEP rather than into the
other types of transport equations. In this work,
we develope the nodal methods for the solution of
SEP using the polynomial expansion nodal
method(PEN) and the analytic function expansion
nodal method(AFEN). Those two methods are
selected as candidates, since they are
acknowledged as superior to the other methods
and the various limitation caused by the transverse
integration can be avoided.[4,5] The goal of this
work is to develope the PEN and AFEN transport
methods which achieve the same success in SEP
as they do in the diffusion equation. In this work
we are not greatly concerned about the
computational capability of the codes such as
accuracy and efficiency, since all the previous
effort contributed to expand the code capability of
PEN and AFEN can be directly applied to the
solution of SEP.

2. Neutron Transport Equations
2.1. Boltzmann Transport Equation

For the solution of the neutron transport
equation considerable work has been continuously
devoted to achieve higher accuracy, faster
convergence, and better stability. We start with the
two dimensional, within group, Boltzmann
transport equation for the isotropic scattering and
source[8,9] :
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In Eq.{1) ¢ix, v, #, ) is an angular flux at the
position (x, y) having the direction (g, 7) and
# (x,v) is the scalar flux defined as

#(x,3) = f f¢(x. ¥, &, n) dudy. 2)

Here, ¢ and ¢, are macroscopic total and
scattering cross sections, and Q(x,y) is an isotropic
neutron source. {If we consider spatial differencing
only, the isotropic fission term can be included in
Q(x,y).] Equation (1) is a first-order differential
equation for the spatial variables x and y.
Combined with the discrete-ordinate method(Sy) in
which the angular variables are described by the
discrete direction m, the equation is solved for the
unknown ¢, (x,y) usually by the finite difference
method(FDM) such as the diamond-difference
method{(DD). The DD is very efficient in
computing time, but it is known to be very weak in
robustness. It generally has many limitations;
producing negative solutions, showing extreme ray
effects and the lack of diffusion limits, etc..[8,9]

2.2. Even-Parity Transport Equation

The even-parity transport equation(EP) is
represented by
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where x(x,y, u, 7) is the even-parity angular flux.[9]
We should note that the preceding equation is the
true transport equation since it has been obtained
from the Boltzmann transport equation without
using any approximation. Due to the even-parity
property of x over the angle, the angular domain
of EP becomes one half of that of the Boltzmann
transport equation. Also, the EP can reduce the
ray effect by using an appropriate piecewise
angular quadrature set.[6] However, the EP has
many drawbacks such as the computational
inefficiency due to the second-order differential
operators for each discrete direction and the
additional computation caused by directionally
coupled reflective boundary conditions, etc..[3]
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2.3. Simplified Even-Parity Transport
Equation

Recently, a new equation which is called the
simplified even-parity equation(SEP) was proposed
as an approximation to the true transport
equation.[2,3] :
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where x(x,y, g, 1) is the SEP angular flux. In
analogy to the simplified Py equations, the multi-
dimensional SEP equations can be obtained by
simply generalizing one dimensional second-
order derivative in EP equation into multi-
dimensions. The SEP is not a true transport
equation since the approximation »(u, ) = (g,
-9} is used in the derivation. Though the SEP
has a weak mathematical foundation, it has many
advantages in numerical computation. Unlike EP
there is no mixed derivative terms in SEP and the
angular domain is reduced by another half of that
of EP. Moreover, the recent work showed
theoretically and numerically that the SEP has a
guaranteed positivity, higher efficiency with the
diffusion synthetic acceleration{DSA), and
eliminated ray effects. It is also verified that the
SEP becomes the simplified Py equation by
simply replacing two dimensional angular
quadratures with one dimensional Gauss
quadratures.[3,7] Regarding this study, the elliptic
nature of SEP makes it relatively easy to convert
the conventional diffusion codes to SEP codes.
The code capability such as dimensionality,
geometry, time-dependency, eigenvalue
searches, etc. can be maintained without extreme

complications.

The discrete-ordinates form of the SEP equation
should be

;0 1 9ta”

1+1/2
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for the direction m (1<m<M). Here, ¢ is the
iteration index. To solve Eq.(5), the scalar flux #$°¢
must be assumed at first and then recalculated at
each source iteration by

¢ N x, )= "g‘wmxﬁ”z(x. ) (6)

and the iteration will be continued until the scalar

flux converges.

3. Polynomial Expansion Nodal Method
for the Simplified Even-Parity
Equation

Now we consider PEN method for the solution of
Eq.(5). We divide a two dimensional domain into a
grid of nodes, whose cross sections are taken to
be piecewise constant with change of values
permitted only at the node interfaces. In the nodal
methods the accuracy depends on how many
unknowns are defined in a node. Here, we assume
five unknowns at a center and at four surfaces as
shown in Fig. 1. Higher accuracy can be attained
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Fig. 1 Rectangular Node (i, j)
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by simply increasing the number of unknowns.
We write the SEP equation for the node (i, j) :

(iteration index omitted.)

2 2 u 2 21,
_Bm O w9 e
O"" 3).’ e dy 2 +011X (x V) (7)
=g} '¢"(x, )+ @,
where
¢ i(x, y)= ﬁ Ol (x, ) . (8)

Firstly, we expand the intra nodal distribution of
the SEP flux in the node {i,j) :

Coi + Crfx+ Ciy
+ Coip + Cidy?

X (x,y)= )

Note that the number of terms in the right-hand-
side of Eq.(9) is the same as the number of
unknowns in the node (i, j). Next, we define a
node averaged flux for the direction m as

il 1 hil2

#2= by [ s s 10

and four surface averaged fluxes for the direction

m as
3‘:"1=‘;,L f_h:z,zxi"(—-h;/z,y)dy (10b)
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Substituting the expansion function in Eq.(9) to
Eqgs.{10) and integrating yields
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in the matrix form. The coefficients
Coi (k=1,--
inversion and the result is

-,5) can be obtained using the matrix

L) =ij
Cul 12 -1 -1 -1 -1y 2R
Cal | 0 U Ub, 0 0 [|%a
Cal=] 0 0 0 -1n Unl||3ix| a3
Col |-6/8 38 3 0 0 |34
Cl -6/ 0 0 3R YR|| 3

Now, we need to set equations to solve for five
unknowns in a node. These equations consist of a
node balance equation and four continuity conditions
at node interfaces. The node balance equation is
obtained by integrating Eq.(7) over the node volume as

i/Z aZZ" 2 02 if
h,h,f [ 0” aZ_le az+6ll(xy)
b2
__ h/Z«[ Illl[o';,¢”(xy +QI ,]M (14)
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If we define the surface averaged neutron currents

for the direction m at the boundaries of the node
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then we may write the node balance equation as
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The remaining four equations come from the

continuity conditions:

Tui—Tod=0,
Tuk—= Tud'=0,
Tib—Tit=0,
b= Ti5 =

(16b}

(16c)

{16d)

{16e)

at the node interfaces depicted in Fig. 2.

If we perform the integration in Eq.{15) using the
intra nodal flux distribution[Eq.(9)] and their

coefficients|Eq.(13)], the surface averaged currents

can be expressed as
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Fig. 2 Current Continuity Conditions
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By applying Eqs.(17) to Eqs.(16), we finally have

the following five equations:
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For a node (i, j), the node balance equation
[Eq.(18a)] consists of a 5-point relation between
one node averaged flux and four surface averaged
fluxes. Similarly, the surface averaged flux
continuity conditions at each interface [Eqs.(18b)-
{18e)] consists of 6-point relations, respectively.

4. Analytic Function Expansion Nodal
Method for the Simplified Even-
Parity Equation

The main idea of AFEN in diffusion theory is to
expand the intra nodal scalar flux ¢" (x,y) using
the analytic solution of the diffusion equation in a
node. Fortunately, the diffusion equation is
homogeneous(meaning that the right-hand-side of
the equation vanishes.) and it is relatively easy to
obtain the analytic solution. Unfortunately,
however, it is not so simple in SEP to find the
analytic solution. This is originated from that the
transport equation has nonzero ¢ term on the
right-hand-side of the equation. Even though we
substitute ¢/ = X"f w,x

hand-side, we have to solve for all x}/ 's (1<m<

and move it to the left-

M) simultaneously and it would result extreme
computational inefficiency. In other words, there is
no practical way to convert the transport equation
into a homogeneous form. Therefore, we admit
that Eq.(7) is nonhomogeneous and the general
solution must be a sum of homogeneous solution

%", and a particular solution »°,, .{i, j omitted.)

The homogeneous equation corresponding to Eq.(7) is

v th 2k 0%
TE T TR a2 o+ on(n =0, (19

To solve Eq.(19) we use the separation of variables

&, (x,9) = X, (x) Yo () into Eq.(19) then we have
3., X T Y
e Ve @0
Letting
Y X o Y
X—= * and —”5.2— v =8 21)
where

for infinite number of eigenvalues a, 8 (k=1, 2,--+),
we have

Xol2)= C,cosh( .

)+Czsmh( m) (23a)

Yul(x)=Cy cosh( ::v >+ Qsinh(%y-), (23b)

Thus, the homogeneous solution for Eq.(19} is

h(x,9)= g:l[Akcosh (—‘f—"x— + M)

m T

+B smh( +— By )]

K Tm

(24)

with every eigenvalue satisfying Eq.(22).

Now, we are to find the particular solution x,
(x,u). Reminding that a particular solution can be
obtained only when nonhomogeneous terms are
known, we need to have the mathematical form of
$" (x,y) [Note that the source term Q "/ (x,y) is
always constant within a node.]

The first option is to use arbitrary functions for
$ " (x,y). Though many functions such as
polynomials, exponential functions, etc. can be
candidates, the use of arbitrary functions would
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result in the extreme computational inefficiency
and it may deteriorate the basic idea of AFEN in
which the analytic solutions are used for the
expansion functions.

The second option is to use the same hyperbolic
functions that are already used for x",, (x,y) as in
Eq.(24). However, in this case, the particular
solution %, (x,y) would emerge in the form of the
hyperbolic functions and it only adds the same
hyperbolic terms to the general solution.
Considering that the total number of terms in the
expansion function for the intra nodal flux can be
easily changed by differing k in Eq.(24)}, these
additional terms contribute nothing in building the
mathematical form of the general solution »",, {x, ).

The third option is what we call the flat source
approximation in which a constant is used for the
approximation to #$"* (x,y). In the flat source
approximation we do not mean that the scalar flux
is always constant in a node. We just use this
approximation to obtain the mathematical form of
x*,, (x,y). Even with the flat source approximation,
the intra nodal distribution of the scalar flux ¢
{x,y) will have the same distribution of x",, {x,y),
since it is calculated by the angular fluxes at each
source iteration by Eq.(8).

When $" (x,y) is assumed to be constant, all the
terms in the right-hand-side of Eq.(7) becomes
constant, vielding

T 0%m
axz + ox,.(x, ¥) = const . (25)

_tm %
g oxt o

Then, the particular solution should be

%, )= Ay, (26)

where Ayis a constant. Finally, the general

solution becomes

X%, )= 20(x, ) + 5%, ¥)

= zl[Akcosh(aL:x—+%) 27)
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In the original AFEN method the same constant
term as A, in Eq.(27) is used for the expansion of
the intra nodal scalar flux. We know that the
constant can not be an analytic solution of the
diffusion equation. [The solution is constant only
when a = 8= 0 in the equations similar to Eqgs.(21)
in diffusion formulation, but this violates Eq.(22).]
It is interesting that while the constant term is
intentionally added in AFEN for the diffusion
equation, the constant emerges in the form of the
analytic solution in AFEN for the SEP equation.

The number of undetermined coefficient Aq, A,
B, k=1, 2, -} in Eq.(27) is determined by the
total number of unknowns in a node. Since we
have five unknowns per node, two pairs of &, 8,
are needed and they must satisfy Eq.(22). Taking
a;=0, =0 and a,=0, B,=0 and rearranging gives
the final form of the expansion function:

)+C smh( ol'lx)
Hm | .
i

) +Ch smh_(—oﬂ-l). (28)

L3

(x y) - le + szCOSh( U

+Ck cosh(
Tm

Using the above expansion, the node averaged
flux and the surface averaged fluxes defined in
Eqs.{10) can be calculated as

iy 2 P\
G i L o (T s
x o h St ( 2w )sz
20 m l’h i j (29a)
+ 6, ’h sl h( 2 T )CM
~ i Oj'ih, i . i'ih" i
Thl=Cil+ cosh( o Cit smh( g#m )C,,,;’s
iig .
el -

(29¢)
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%= Ci+ = st ‘z’ﬂ” Jei

+ cosh(-%;%i)Cﬁ,{ - sinh( g,;:" )c,,.g (29d)
= C:'H—i‘%;—,. sinh( g:f" )C;é

+ cosh( ;7;:‘ ) s mh( T )C“ (29¢)
respectively. If we abbreviate as g:::‘ and

" ’h
2m ,then Egs. (29) can be written in the

matrix form as

Xm™= Am Cmr (30)
where
'ii.i
/'fm: :x’:an ’
Xms
X wr
1 sinhx/x 0 _ sinhy/y 0
1 coshx —sishx sishy/y 0
A,=]1 coshx sinhx sinhy/y 0 1,
1sinhx/x 0 coshy —sinhy
1sinhx/x 0 cosh y sinh y
i,
ml
Ciz
Cn=|Ci
ck
c&
The expansion coefficients are obtained by
Co= A" 2m, (31)
vielding
T ;;'_cosl_l;:cos}l;— sin_h}Einh;__ —ij
™™ (sinh x— xcosh x)(sinh y— vcosh y)
sinh x
2(sinh x— % cosh #) SEAREY (32a)
+ sinh_y (Xmpt

2(sinh ¥~ vcosh )
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%= e Seoeh 5 (as-a- k) (320
Ch= b= (i ¥4h) (32¢)
T }:Tvcosh 5 (2xs- ) (324
Ch=otis (1) (32¢)

Applying Eq.(28) and Eqs.(32) to the definitions of
the surface average neutron currents in Eqs.(15) gives

V=5 ADY (k- T

o (33

+h(OY (- 34— zaR)], ?
V=LA (R~ ik

— (DM (27 x,,L— rigy, B
Vb= A Geso- 22

O RAC T TV TN B
Tih= -2—"'[f1(y"(xini; X )

— (N (275 - 2 k- %5D), (33d)

where we use the abbreviations f£,(%) i-i=(@L@)"'
sinh x

xsinhx

—ii_ | xsiohy _
and fx ( sinh x— xcosh %

ij
) , etc.. Substituting

Eqgs.(33) into the node balance equation and the
surface averaged flux continuity conditions
[Eqgs.(16)], we finally have

S CXA PP T,

——fz(y)” @ri-2%

me (34a)

+d2 = P+ @,
AW (2ah~ 2 HADY (27 - i - ki)
_fl(x)l—l.; ( x .'_ x:' ll) (34b)

+f2(x)lll(2xlll 411

tl}) 0
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Reflective

Vacuum
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Fig. 3. Configuration of a Sample Problem
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The above AFEN difference equation comprises
the same matrix equation with differing
coefficients. We can expect that the AFEN
calculation will take a little longer CPU time than
PEN since the process of generating the
coefficient matrix is more complicated.

In the PEN and AFEN formulations we have
defined five unknowns which consist of one node
averaged flux and four surface averaged fluxes.

However, among them only three are real

T.W. Noh 613

Table 1. Material Properties of the Problem

Region g o, Q
A 1.0 0.9 1.0
B 1.0 0.0 0.0
100 -
9.0 I
00 MR, ——Trans(DD 24241
N ~— SERFOM 2024)
o N

\ - Dilt(FDM 24x24)
60

Scalar Flux (at y=6 crn
o
g
L
|

. e

x{em)

Fig. 4. Transport, SEP, and Diffusion Calculations

unknowns, since the surface average fluxes are
shared by the two adjacent nodes. Hence, we
solve three equations per node; one for the node
averaged flux and two for the vertical and
horizontal surface averaged fluxes.

By applying the appropriate boundary
conditions such as vacuum and reflective
conditions we have the system of linear equations
for the SEP fluxes x.” and x,.,! (s=L,B or R, T)
for the discrete direction m{l1<m<M). After
solving the system of equations for all the
directions, we calculate the scalar flux using Eq.{8)
and it will update the right-hand-side of the SEP
equation. These processes will be continued until

the solution converges.
5. Numerical Results
In order to confirm how the proposed PEN and

AFEN methods work with the SEP transport

equation, we perform some numerical tests for a
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Table 2. Percent Errors of FDM, PEN, and AFEN for Diffusion Calculations

9.2112 87179 7.6413 4.9890 1.0022 21881

94850 3.0% 91000 44%| 81900 7.2%| 6.3990 283% | 0.7731 22.9% | 44580 103.7%
93680 1.7% | 89670 29%| 80290 51%| 52640 55% | 09806 22%| 22370 22%
92300 02% 87770 07%| 7.7680 17% | 49890 0.0% | 1.0130 1.1%| 22650 3.5%
8.8733 7.7388 5.8462 41909 0.9353 21880

92510 4.3% | 85470 104%{ 6.9000 18.0% | 59140 41.1% | 0.7399 209% | 44630 104.0%
9.0730 23%| 80060 35%| 62720 73%| 43860 4.7% | 09181 18%| 22590 32%
89090 04%| 7.7840 0.6%| 59380 16% | 4.1630 0.7% | 0.9467 1.2%| 22660 36%
8.3990 6.0414 1.7603 2.8410 0.8659 22293

88220 50% | 7.1920 19.0% | 1.2290 30.2% | 4.7140 65.9% | 0.6877 20.6% | 45220 102.8%
86960 35% | 63190 46%| 17010 34%| 28570 0.6% | 0.8057 7.0%| 23160 3.9%
84970 12% | 60880 0.8%| 1.7440 0% | 28270 05% | 08947 33%| 23130 38%
8.1053 54501 1.1529 2.7953 1.3688 26140

86080 6.2% | 6.8010 24.8%| 08503 26.2% | 4.6840 67.6% | 1.0270 25.0% | 48580 85.8%
83850 35%| 56470 36% 10580 82% | 2780 03% | 1.3420 20%| 28040 7.3%
81700 08% | 54450 0.1% 11750 1.9% | 27760 07% | 1.3660 02%| 27530 53%
7.9994 53470 1.2016 3.9947 4.8683 3.8589

85320 6.7% | 6.7160 256% | 0.8908 259% | 5.7670 44.4% | 6.2050 27.5% | 6.0930 57.9%
82480 3.1%| 55290 34%| 11620 33%| 41050 28% | 52940 87%| 41500 7.5%
80320 04%| 53300 03%] 12080 05% ] 39760 05% | 49770 22%| 40260 4.3%
7.9714 5.3307 1.2585 46971 6.3902 45610

85110 6.8% | 6.7020 253% | 09199 269% | 6.2070 32.1% | 7.3810 155% | 65880 44.4%
82110 3.0%| 54910 2.7%|( 12120 37%| 48670 36% | 6.8050 65%( 48940 7.3%
79950 03%| 53100 0.7%| 12650 05% | 47040 01% | 65410 24% | 47730 46%
FDM 48x48 (Reference®)

FDM 6x6 (Relative Error) * 48x48 values are averaged into 6x6 values

PEN 6x6( - ) - Average Error : FDM(33.0%), PEN(4.0%), AFEN(1.4%)
AFENG6x6( ~» )

sample problem. The computational problem
shown in Fig. 3. is 12cm X 12cm square domain
with the reflective boundary conditions on top,
left, and bottom and the vacuum boundary
condition on right. It contains a distributed source
and pure absorbing regions in it. Table 1 shows
the material properties of the regions.

As we mentioned in the preceding section, the
SEP is known to be a good approximation to the
transport equation. Even though showing the

validation of SEP is not a main issue in this paper,
we start with providing the transport, SEP, and
the diffusion calculations for the sample problem.
This will surely give the motivation of the following
works. Figure 4 shows the node averaged scalar
fluxes calculated by the first-order Boltzmann
transport equation, the SEP equation, and the
diffusion equation. As spatial differencing
schemes, the diamond difference method(DD) is
used for the Boltzmann transport equation and the
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Table 3. Results of Diffusion Calculations (performed by Pentium 166 MHZ)

6x6 12x12 24 %24
No.of  Average CPUtime No.of  Average CPUtime No.of  Average CPU time
Unknowns  Error(%) {sec) Unknowns  Error(%) {sec) Unknowns  Error{%) {sec)
FDM 36 33 ~0 144 7.7 0.01 576 2.1 0.38
PEN 120 4.0 ~0 456 2.3 0.16 1776 1.4 2.47
AFEN 120 14 ~0 456 1.3 0.22 1776 1.6 2.53

Table 4. Percent Errors of FDM, PEN, and AFEN for SEP Calculations

9.3387 8.8257 7.7367 5.2960 0.9354 2.4773

9.0300 3.3%(8.2825 6.2%|6.9320 10.4%3.8153 28.0%|1.2553 34.2% | 1.3305 46.3%
9.4250 0.9%(8.9970 1.9%{8.0890 4.6%{5.6260 6.2%)0.7476 20.1% ) 1.9150 22.7%
8.7230 6.6%(8.1810 7.3%[7.0700 8.6%|4.9760 6.0%|1.0470 11.9%|2.4550 0.9%

9.0152 7.9561 6.0094 4.5910 0.8803 2.4739

8.56425 5.2%16.8338 14.1%(4.8413 19.4%|2.7665 39.7%| 1.1565 31.4% | 1.3208 46.6%
9.1430 1.4%(8.1760 2.8%|6.4240 6.9%|4.8900 6.5%0.6983 20.7% | 1.9240 22.2%
8.3920 6.9%{7.4790 6.0%)5.7460 4.4%;4.3800 4.6%|0.9786 11.2%|2.4600 0.6%

8.5112 6.2745 1.6501 3.2381 0.8138 2.5052

7.9295 6.8%|5.0473 19.6%|2.2858 38.5%|1.5245 52.9%|1.1025 35.5% | 1.3520 46.0%
8.7360 2.6%16.5220 3.9%{1.5700 4.9%{3.3870 4.6%!0.5947 26.9%|1.9440 22.4%
7.8810 7.4%{6.0810 3.1%/1.8200 10.3%(3.1930 1.4%|0.8898 9.3%|2.5230 0.7%

8.2512 5.7682 1.0846 3.1980 1.2854 2.8218

7.6220 7.6%|4.3805 24.1%1.4470 33.4%|1.4875 53.5%]1.7940 39.6% | 1.7923 36.5%
8.4710 2.7%1(5.9810 3.7%|0.9794 9.7%|3.2900 2.9%|1.0200 20.6% | 2.2350 20.8%
7.5450 8.6%(5.5460 3.9%(1.2520 15.4%}3.1140 2.6%|1.3270 3.2%|28710 1.7%

8.1672 5.6800 1.1293 4.3973 5.0319 4.0426

7.5323 7.8%(4.2910 24.5%|1.4680 30.0%|2.6053 40.8%|3.9378 21.7% | 3.0698 24.1%
8.3760 2.6%[5.8890 3.7%|1.0620 6.0%|4.4440 1.1%|4.7740 5.1%|3.3500 17.1%
7.3990 9.4% (54030 4.9%(1.3010 15.2%|4.0580 7.7%4.5460 9.7%|3.9120 3.2%

8.1448 5.6673 1.1752 5.0166 6.4982 4.6499

7.5113 7.8%4.2848 24.6%{1.5513 32.0%|3.5468 29.3%|5.6850 12.5% | 4.1093 11.6%
8.3490 2.5%|5.8630 3.2%]1.0950 6.8%|5.0080 0.2%|6.0180 7.4%|3.8480 17.2%
7.3500 9.8%(5.3690 55%|1.3510 15.0%|4.5380 9.5%|5.6170 13.6%|4.4130 5.1%

FDM 48x48 (Reference*)
FDM 6x6 (Relative Error) » 48x48 values are averaged into 6x6 values
PEN 6x6( - ) - Average Error : FDM(26.3%), PEN(8.8%), AFEN(7.0%)
AFEN6x6( -~ )
finite difference methods{box scheme) are used for use a relatively fine 24 X 24 mesh configuration

both the SEP and the diffusion equation(Diff). We and S, quadrature set for all the calculations. The
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Table 5. Results of SEP Calculations (performed by Pentium 166 MHZ)

6%x6 12x12 24x24
No.of  Average CPUtime No.of  Average CPUtime No.of  Average CPU time
Unknowns  Error(%) (sec) Unknowns  Error{%) (sec)  Unknowns Error(%) (sec)
FDM 36 26.3 0.27 144 7.9 1.28 576 2.3 6.15
PEN 120 8.8 0.71 456 4.0 5.93 1776 1.1 76.83
AFEN 120 7.0 1.21 456 3.6 19.44 1776 2.0 84.31

* Without DSA(Diffusion Synthetic Acceleration)

vacuum boundary condition in transport equations
is replaced by the Marshak condition in diffusion
equation. The result is that while the SEP
calculation is in good agreement with the transport
calculation everywhere in the domain, the
diffusion calculation shows differences near the
material interface and the boundaries. This result
is rather general and the details on the accuracy of
SEP can be found somewhere.|[2,3]

The second test is to see the accuracy
improvements by PEN and AFEN over FDM in
diffusion calculations. Table 2 shows the results of
6 x 6 calculation for the sample problem. Each
box in Table 2 contains the node averaged fluxes
by FDM(box scheme), PEN, and AFEN with their
percent errors to the FDM 48 X 48 fine mesh
calculation. Table 3 summarizes the results for the
different node systems. Examining the accuracies
and the elapsed CPU times we notice that PEN
and AFEN are superior to FDM and AFEN is
slightly better than PEN. This is rather a general
result in diffusion theory and we desire to have the
similar improvements by PEN and AFEN in the
solution of SEP equation.

Finally we examine PEN and AFEN as the
computational methods for the SEP equation. Our
objective is to achieve the same improvement in
SEP calculation. We solve the SEP equation for
the sample problem by FDM, PEN and AFEN
using the same S, quadrature set. The 6 X6 node
averaged fluxes and their percent errors are shown

in Table 4. The reference calculation is the 48 x
48 FDM as before. As the case of diffusion
calculation, the SEP calculation by PEN and AFEN
are more accurate than FDM and AFEN slightly
shows a better accuracy than PEN. Table 5
summarizes the results of other calculations and it
also shows the effectiveness of PEN and AFEN as
the nodal methods for SEP equation.

6. Conclusion and Discussion

The purpose of this study is to develope the
nodal transport method for the solution of the
simplified even-parity equation using the nodal
methods developed for the diffusion equation. The
motivation is that if we use the discrete-ordinates
method for treating the angular variables then SEP
has the elliptic differential operator for spatial
variables like the diffusion equation. The PEN and
AFEN methods are selected as nodal methods
since they do not have transverse integration
procedures.

In this study we found that the PEN methed,
which uses polynomials to represent intra nodal
flux, can be easily converted to the solution
method for SEP. However, the AFEN methed in
which the analytic solutions are used for the
expansion of intra nodal angular flux requires an
assumption for the scalar flux distribution in the
node. Here, we use a flat source approximation to
follow the basic idea of AFEN and to reduce the
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amount of computations. The numerical results
show that the flat source approximation with
AFEN works well with the SEP transport
calculation.

We conclude that the PEN and AFEN methods
have been successfully applied to the nodal
solution methods for the SEP transport equation.

In this study PEN and AFEN transport methods
are developed by considering only 5 unknowns
per node. Even though the smaller number of
unknowns does not harm in developing
methodology, additional unknowns such as corner
fluxes, and surface weighted fluxes are necessary
to enhance the overall accuracies of the methods.
To speed up the SEP computation in the discrete-
ordinates method, the diffusion synthetic
acceleration(DSA) is necessary and it would
substantially reduce the total number of source
iteration. Considering that much effort have been
devoted to expand PEN and AFEN methods to the
three dimensional diffusion problem including
hexagonal geometry, the similar works could be
continued in developing the Sy transport methods
by selecting the appropriate quadrature set.[10]
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