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Abstract

The module LEAPR of NJOY data processing system has been improved to have the

capability of computing the thermal elastic scattering cross sections for silicon, which has a

diamond-like structure. Silicon lattice was assumed as an fcc lattice with two atoms at each

lattice point.

The calculation formulas for thermal neutron elastic scattering by silicon were introduced and

incorporated into LEAPR, and then the scattering cross sections for silicon were computed.

The results were compared with experimental data, and they were found to give a good

agreement with experimental data.
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1. Introduction

At the thermal energies, the energy transferred
by the scattering of a neutron is similar to the
kinetic energies of atoms in liquids and solids, and
the de Broglie wavelength is comparable to the
interatomic distances. Hence, the characteristic
motion of atoms and their structures should be
taken into account to describe the thermal
scattering exactly.

Silicon acts as a very effective thermal neutron
filter [1], reducing fast-neutron background. One
of its important uses is a fast-neutron attenuator at
BNCT (Boron Neutron Capture Therapy) facilities

[2]. It is required to determine the characteristics of
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thermal neutron scattering by silicon to understand
the properties of silicon as a filter.

NJOY [3]) is widely used as a nuclear data
processing tool, and has a built-in module named
LEAPR which is able to calculate thermal
scattering cross sections for materials of hcp
{(hexagonal close packed) lattices such as beryllium.
This module can be also used to calculate the
thermal inelastic scattering cross sections for
silicon with only user defined data for phonon
frequency spectrum. However, the code can not
exactly compute thermal elastic scattering cross
sections because the module does not take into
account the structure of silicon lattice on which the
elastic scattering sensitively depends.
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Fig. 1. Diamond-like Structure of Si

In the present article, the module LEAPR of
NJOY is improved to have the capability of
computing the thermal elastic scattering cross
sections for silicon polycrystal, which has a
diamond-like lattice structure. The results are
compared with experimental data, and they are
found to give a good agreement with experimental
data.

2. Structure of Silicon Lattice

Silicon has a diamond-like cube structure which
consists of two interpenetrating fcc(face-centered
cubic) lattices with one being replaced from the
other by 1/4 of the principal diagonal of the cube
[Fig. 1]. It can be simplified as a single fcc lattice
with each lattice point having two identical atoms,
one at (0,0,0), and the other at (1/4, 1/4, 1/4).

In case of fcc lattice, primitive lattice vector T
can be expressed as:

T = wa;t‘ua+uza;, 1
where u, , up and u; are integers which can take

all possible values including zero, and a,, a» and
a; are the primitive translation vectors which

X

Fig. 2. Primitive Unit Cell of an fcc Structure

construct the primitive unit cell, defined as:

a1=%a(§+ ;),
a=4% a3+ 2), (2)
aa=12“a(2+ 52

where £, §f and £ are the unit vectors in a
cartesian coordinate system, and a is the length of
the cube edge called lattice constant [Fig. 2]. For
silicon, the lattice constant a is 5.42 A [4].

The reciprocal lattice vector is defined as

t = Lb, + b, + I1by 3)

where [, [, and /5 are integers which can take all
possible values including zero, and by, b, and b,
are primitive translation vectors of reciprocal
lattice, defined as:
b
=283+ 5- 2,
x
b= @
=2 (— 3+ 5+ B),
a) X a
a) - &)X a;
=2 (3-5+3),

b3 =2
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and it is evident from (2} and (4) that

a;* b; = 2n; , 5)
where the symbol 8, is the Kronecker delta.

3. Elastic Scattering

Through the thermal elastic scattering by the
bound nuclei, the energy of a neutron remains
unchanged. This should be distinguished from the
elastic scattering by a single particle where the
neutron loses energy. The thermal elastic
scattering can be divided into two parts: coherent
scattering and incoherent scattering. For
crystalline solids such as silicon, scattered waves
interfere with each other, resulting in so-called
Bragg scattering, which is a coherent elastic
scattering. The incoherent effect is important for
hydrogenous materials and neglected in this work.

3.1. Bragg Scattering

As a consequence of symmetry of crystal lattice,
Bragg scattering occurs if

dk = k—k" = (/L 1), (6)

where Ak is scattering vector, k is the wave
vector of the incident neutron, and K’ is the wave
vector of the scattered neutron.

Since the Bragg scattering is elastic {1k | = | k" |},
it follows from {6) that

ldk| = 2ksing = |d = 2;"1 (7a)

or

2dsinf = nd , {7b)

where § is the Bragg angle between k and the

Bragg planes which are orthogonal to r. d is the
spacing between Bragg planes, and A is the
wavelength of the incident neutron.

Eq. (7b) shows that no Bragg scattering can
occur when the wavelength of the incident
neutron is larger than twice the largest spacing
dmex Of Bragg planes. When A reaches 2de k=T
/2, where r, is the smallest length of the
reciprocal lattice vector), the first Bragg scattering
occurs at the incident angle of 90°. In crystalline
solids, there exist many Bragg planes which satisfy
Eq. {7b) and the energies corresponding to these
critical values (k, = 7, /2),

e S e

B = 8m ®

are usually called the Bragg edges. Here m is the
mass of a neutron.

3.2. Elastic Cross Section for Silicon

The coherent elastic cross section for a

polycrystal [5] is given by

&2k
Gk = n”;‘;:z SHLe-apap, o
where n is the number of atoms in the primitive
unit cell, V is the volume of the primitive unit cell,
o, is the effective bound coherent scattering cross
section for the material, e is the Debye-Waller
factor, and F(r) is the unit cell structure factor. The
summation extends over all reciprocal lattice
vectors whose magnitudes are not greater than 2k.

At each Bragg edge which satisfies Eq. (8), the
coherent scattering cross section shows the sharp
Bragg peak, and then decreases proportionally to
E*! with increasing neutron energy up to the next
Bragg edge. Each Bragg peak arises by reflection
of neutrons from a new set of Bragg planes which
satisfy Eq. (7b). At energies greater than 0.1 eV,
the cross section varies smoothly due to



634 d. Korean Nuclear Society, Volume 31, No. 6, December 1999

30 — A 1 1 'l
25+ =
2
£ 24 L
5
€
8 154 .
2 10 -
5
g
5 |-
0 L] v T T - T v
0.00 0.02 004 006 008 0.10

Energy (eV)

Fig. 3. The Phonon Frequency Spectrum of Si

contribution of so many such planes.

The Debye-Waller factor reflects the influence of
the atomic motions on the coherent elastic
scattering. As the temperature of the material
increases, the Debye-Waller factor decreases due
to the increased thermal motions of atoms,
reducing the intensity of the Bragg scattering. W(r}
in the Debye-Waller factor is calculated using the
phonon frequency spectrum of the silicon lattice in
the module LEAPR. Fig. 3 shows the phonon
frequency spectrum used for this work, which is
expressed as a function of the phonon energy.
This spectrum is that of coarse-grained silicon
powders measured by Nesterenko et al.[6].
Average grain size was 100gm, so that this curve
can be approximated as representing the phonon
spectrum of the bulk of the silicon lattice.

The unit cell structure factor is defined as

F(o) = sg;ei" o (10)

where n is the number of atoms in the primitive
unit cell and p, is the positions of atoms in the
primitive unit cell. If the crystalline structure is such
that only one atom is contained per primitive unit
cell, the structure factor is equal to 1. In the case
of silicon, there are two atoms in the primitive unit
cell at positions (0,0,0), (1/4, 1/4, 1/4), so that

a1+ a2+ as

p=0, p = — 4 (11)

Thus, using Eq. (3) and Eq. (5), we obtain
(D2 =| e’ " 1
=Il+ei2;r(l.+12+l,)/4 lg (12)

=2 +2cost27r(ll + L+ 5)/4].

For fcc lattice, the volume of the primitive unit
cell is

3

V=a"axa = ‘C'Z_ (13)

and, from Eq. (3) and Eq.(4), t is given by

r= (‘Zalr‘ )‘/7(11 - 12+ 13)2+ (ll+ 12" 13)2"" (— ll+ 12+ 13)2

=(—2-(-l’£)¢ 307+ 3554 347=2h l—2hh— 2Lk,

4. Inelastic Scattering for Silicon

Inelastic scattering includes both the coherent
and incoherent contributions. The numerical
calculation of such scattering is considerably
simplified by two approximations: the incoherent
approximation and the Gaussian approximation.
In the incoherent approximation, the interference
effect of inelastic scattering is neglected. The
approximation is valid for neutrons with energies
greater than about 0.001 eV where the
interference effect is practically negligible. In the
Gaussian approximation, the intermediate
scattering function is represented as a Gaussian
function of the scattering vector. The intermediate
scattering function is such a function that describes
the thermal scattering.

With these approximations, the inelastic

scattering cross sections for thermal neutrons can
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Table 1. The Physical Constants Used for the

Calculations
Coherent bound scattering cross section  2.16 bamns (7]
Weight ratio to neutron 27.844
Free atom cross section 2.042 bamns
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Fig. 4. The Elastic Cross Sections for Si

be obtained from the exact shape of the phonon
frequency distribution. The module LEAPR needs
as an input the phonon frequency spectrum of the
material being considered. We used the
experimentally determined phonon frequency
spectrum of the silicon crystal [6].

5. Calculations and the Results

The formulas for the thermal neutron elastic
scattering by silicon, which were introduced in
section 3.2, are incorporated into the module
LEAPR of NJOY. The module is used to
calculate the thermal elastic scattering cross
sections for silicon polycrystal. This method can
be also applied for other materials which have
diamond-like structures such as germanium. The
effect of inelastic scattering is taken into account
by using the phonon frequency spectrum of the
silicon crystal. The calculations were performed
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Fig. 5. The Inelastic Cross Sections for Si

at 77°K and 300°K. The physical constants used
for the calculations are shown in Table 1.

The computed coherent elastic scattering cross
sections showing the Bragg edges and peaks are
graphed in Fig. 4. Notice that the cross section is
zero for energies below 2.08 meV, which is
called the Bragg cut-off. Each Bragg edge
corresponds to the value obtained from Eq. (8).
The Bragg peaks represent a positive
interference of neutron waves scattered from a
new set of Bragg planes in silicon lattice. The
peaks are a little lower at the higher temperature
because of the increased thermal motion of
silicon atoms.

In Figs. 5 and 6, inelastic cross sections and
total scattering cross sections are shown. Notice
that the computed inelastic cross sections are
larger at the higher temperature due to the
increased thermal motion of atoms.

In Fig. 7, the total cross sections computed at
300°K are compared with the experimental data.
The experimental data were given as the total
cross sections, so for comparison, the theoretical
total cross sections were obtained by adding the
silicon capture cross sections from ENDF/B-VI
[8] to the total scattering cross sections calculated

in this work. The experimental data were
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Fig. 6. The Total Scattering Cross Sections for Si
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Fig. 8. The Total Scattering Cross Sections at
300°K for Si

obtained from BNL-325 [9] and the work of
Aizawa and Matsumoto [10], and these
experiments were performed at room
temperature. It is evident from the figure that the
calculated total cross sections give a good
agreement with the measured data. The
agreement for the Bragg edges is very good.

In Fig. 8, the scattering cross sections
calculated at 300 °K are compared with the
elastic cross section data from ENDF/B-VI. The
cross section data from ENDF/B-VI are those for
a single free nucleus. The elastic cross sections
obtained from ENDF/B-VI are larger than the

calculated values at lower energies but tend to
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Fig. 7. The Total Cross Sections at 300°K for Si
coincide with them at higher energies.
6. Conclusions

The attempt to calculate the thermal neutron
scattering cross sections for the silicon crystal was
made in this article. Silicon lattice was assumed as
an fec lattice with two atoms at each lattice point.
The calculation formulas for thermal neutron
elastic scattering cross sections for the silicon were
introduced and incorporated into the module
LEAPR of NJOY, and then the scattering cross
sections were computed. The inelastic scattering
cross sections were calculated using the
experimentally determined phonon frequency
spectrum for silicon. This improved module can be
also used to obtain the scattering cross sections for
the other materials which have diamond-like
structures such as germanium by changing the
lattice constants and the coherent bound scattering
cross section in the source code.

The calculated results were compared with the
experimental data. The results were found to give
a good agreement with the experimental data.
Bragg edges and peaks shown in the calculated
coherent elastic cross sections agreed weli with

those in the experimental data.
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