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Abstract

Series expansion methods to compute the exponential of a matrix have been compared by
applying them to fuel depletion calculations. Specifically, Taylor, Padé, Chebyshev, and rational
Chebyshev approximations have been investigated by approximating the exponentials of bum
matrices by truncated series of each method with the scaling and squaring algorithm. The
accuracy and efficiency of these methods have been tested by performing various numerical
tests using one thermal reactor and two fast reactor depletion problems. The results indicate
that all the four series methods are accurate enough to be used for fuel depletion calculations
although the rational Chebyshev approximation is relatively less accurate. They also show that
the rational approximations are more efficient than the polynomial approximations.
Considering the computational accuracy and efficiency, the Padé approximation appears to be
better than the other methods. Its accuracy is better than the rational Chebyshev
approximation, while being comparable to the polynomial approximations. On the other hand,
its efficiency is better than the polynomial approximations and is similar to the rational
Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than
the polynomial approximations by a factor of ~1.7.

1. Introduction

In fast reactor core designs, high burnup is an
important objective to reduce the fuel cycle cost.
In order to assure fuel pin integrity in a high
burnup core without introducing additional design
margins, it is necessary to predict the burnup
history of each fuel pin accurately. Furthermore, in
the fast reactor fuel cycle accompanying the
reprocessing of spent fuel, the burnup and isotope
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distribution of spent fuel has a large effect on the
composition of the refabricated fuel, and it is also
important for the accountancy and control of fuel
material required in the reprocessing process. In
this case, spatially detailed nuclide densities (e.g.
by axial position for individual fuel pins) are
required when pre-calculated fits of number
densities for a limited number of “enveloping”
depletion histories are unavailable or inadequate.
The required computational effort is particularly
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large when the pin-wise density distributions are
needed for a large number of nuclides. This has
motivated the investigation of more efficient and
accurate computational methods for performing
fuel depletion.

Generally, all depletion methods rely upon the
quasi-static approximation in which the nonlinear
neutron and nuclide fields are decoupled for a
subinterval of the burn cycle.[1] The nuclide
transmutation equation is then solved by
approximating the time-dependent flux over each
subinterval using a constant value (e.g., a weighted
average of the beginning and the end of
subinterval fluxes). In this case, the nuclide
transmutation equation is represented by a system
of first-order differential equations. The formal
solution of this depletion equation is obtained in
terms of the exponential of the transmutation
matrix. This exponential function of the
transmutation matrix is typically determined by a
Taylor series approximation. This technique is
currently used in the codes ORIGEN[2], REBUS-
3[3], and BURNER[4].

The motivation for the work here was to
investigate alternate methods to compute the
exponential functions of transmutation matrices.
Taylor series, Padé approximation, Chebyshev
approximation, and rational Chebyshev
approximation methods were compared by
applying them to fuel depletion calculations.
Section 2 describes these computational methods
with the scaling and squaring algorithm. Section
3 presents the results of the numerical tests for
one thermal reactor and two fast reactor

depletion calculations. Section 4 concludes the
paper.

2. Matrix Exponential Methods

In the quasi-static approximation for the burnup
calculation, the nuclide transmutation equation for

the nuclide density vector, N(t), at a position or
burn region is represented by a system of first-
order differential equations:

%N(t) = M(¢, 0,A) N(¢) (1)

with the transmutation matrix M defined by

M($,0,8)=C(g(r,E, ) T(a)>g + D(A) 2)

where Tle) and IXA) represent the cross section
and decay matrices (including yield factors),
respectively, and < >¢ denotes the integral over
energy. The formal solution of this depletion
equation is obtained in terms of the exponential of

the transmutation matrix as:
N(t)=e™ N, (3)

where N, is the initial nuclide density vector.

For computing the exponential of a matrix, e,
there exist dozens of methods obtained from
classical results in analysis, approximation theory,
and matrix theory.[5,6] These methods can be
classified as series methods, ordinary differential
equation methods, polynomial methods, and
matrix decomposition methods. Among these
various methods, Taylor or Padé approximation
with a scaling and squaring algorithm is known to
be one of the most effective methods.[5]
Therefore, we chose the series methods with a
scaling and squaring algorithm and compared their
effectiveness for solving the nuclide transmutation

equation.
2.1. Series Approximations

The so-called series methods for computing
matrix functions are based on the idea that if a
scalar function g{z) approximates a scalar function
f(z) on the spectrum of a matrix A, then g(A)
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approximates f(A). Hence, in these methods,
standard approximation techniques for the scalar
function €' are directly applied to matrices. In the
present work, we investigate the Taylor series, the
diagonal Padé approximation, the Chebyshev
approximation, and the rational Chebyshev
approximation method.

In the Taylor series method, e* is approximated
through the truncation of its Taylor series as:

efx 2 - A" (@
n= .

The order of approximation £ is chosen large
enough so that the truncation error is smaller
than the prescribed error tolerance. In the
present work, based on the inverse error
analysis in Reference 5, the order k was
determined as the smallest integer such that
2%k / (h+1)1<10°% .

In the (p,q) Padé approximation, e” is
approximated by a rational function whose
numerator and denominator are p-th and g-th
order polynomials, respectively, as:

4% Ry(A) = [Du(I1"N,(4)  5)

where
— )1 pl "
N, (A) = pa (p(_f;)?ny(n;_pn)y A (6)
— gl .
Dy(A) = ZIO (p(f(;r)f’n!(”g'_q',l)! (-A" @

Notice that R,(A) is the p-th order Taylor
polynomial. For a given amount of work, the
diagonal approximation (p=g) minimizes the
truncation error, and hence it is preferred over the
off-diagonal approximation (p_+q).[5,6] As a result,
we employed the diagonal approximation R, (A},
and determined the order g as the smallest integer

such that 2%% (¢!)?/(2g)! (2g+1)!<10? based on
the inverse error analysis in Reference 5.

The Chebyshev approximation is based on the
following Chebyshev series representation of the
scalar function €' in the interval [-1,1};

e = I,(1) + 2121"(1) () ®)

where T,'s are Chebyshev polynomials of the first
kind and I,’s are modified Bessel functions of the
first kind. If the series is truncated at the k-th
order, a polynomial of degree kb, whose
coefficients depend on the truncation order, is
obtained as:

e'x gbcn(k) ¢ 9)

This polynomial is close to the minimax
polynomial, which (among all polynomials of the
same degree) has the smallest maximum deviation
from €', If we apply this approximation formula to
a matrix A, we obtain the Chebyshev
approximation formula for e* as:

el ~ ,goc,,(k) A” (10)

In this Chebyshev approximation, the approximation
order k was chosen to be the same as the Taylor
series approximation.

In the rational Chebyshev approximation of a
scalar function €' in the interval [-1,1], a Padé
approximation is perturbed with a Chebyshev
polynomial in such a way as to reduce the leading
coefficient in the error R,(t)— e!. This
perturbation causes the error near the center of
expansion to increase slightly. However, the small
increase of the error near the center of expansion
is compensated for by a decrease in the error
farther away. If we approximate e by a rational
function R(t) with numerator of degree p and
denominator of degree g and if we determine the
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coefficients such that the maximum absolute value
of R(t) - €' for a given interval is minimized, we
obtained the rational Chebyshev approximation

for €' as:

el = (,Zoantn)/(,g)bntn) (11)

whose coefficients depend on the degrees p and q.
If we apply this approximation formula to a matrix
A, we obtain the rational Chebyshev approxima-
tion formula for €* as:

-1
e’“z(nz bnA”) (n}i_‘ba,,A”) (12)

In the present work, we employed the diagonal
approximation (i.e., p=q) and determined the
order g to be the same as Padé approximation.

2.2. Scaling and Squaring

In a series method for computing the
exponential of a matrix tM, the powers of tM are
added or subtracted. Hence, if two powers of tM
have equally large corresponding elements,
“catastrophic cancellation” occurs in the finite
precision arithmetic.{7] This roundoff error
difficulty generally increases as t || M || increases.
Furthermore, in the case of Taylor and Pade
approximations, the computing costs also
increase as t || M|| increases since Taylor and
Padé approximants are good only near the origin.

These difficulties can be controlled by exploiting
the fact that e™ = (&"™™)". Using this property of
the exponential function, the matrix tM is first
scaled by a power of two such that the
exponential of the scaled matrix tM/m can be
reliably and efficiently computed, and then the
exponential of the original matrix e'™ is formed by

repeatedly squaring the resulting matrix e™™. In

the present study, the scaling parameter m was
chosen as the smallest power of two for which
t|| M|l«/m=<1/2. That is, a smallest non-negative
integer J was chosen such that 2’ >t || M || ...

3. Numerical Tests

The performance of the above four series
methods was compared by applying them to local
burnup calculations for an modular high
temperature gas-cooled reactor (MHTGR) core[8],
a 450 MWt liquid metal reactor (LMR) core[9],
and the EBR-Il core[10]. The burn matrices were
constructed using multigroup microscopic cross
section sets and the group fluxes obtained by
three-dimensional nodal calculations. Nodal
calculations were performed with the nodal
option of the DIF3D code[11] using 10 energy
groups for the MHTGR and 9 groups for the 450
MWt LMR and the EBR-IL

In the burn chains for the MHTGR problem,
total 9 isotopes were employed including a
lumped fission product and a dummy isotope
representing a fictitious reaction end product.
Since this core is designed for producing tritium
using highly enriched uranium fuel and lithium
target, only two heavy isotopes (U-235 and U-
238) were included in the burn chains. On the
other hand, Xe-135 and Sm-149 were explicitly
represented because of large thermal absorption
cross sections. For the 450 MWt LMR, 8 actinide
isotopes (U-235, U-236, U-238, Pu-238, Pu-
239, Pu-240, Pu-241, and Pu-242) were included
in the burn chains, and total 12 nuclides were
employed. Fission and capture reactions were
considered for all 8 heavy isotopes, but (n,2n)
reaction was considered only for Pu-239. The g~
decay of Pu-241 was taken into account, but the
a decays of the other isotopes were neglected.
The fission products were represented by three

lumped fission products, and all the other end
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Fig. 1. Isotope Transmutation Chains Used for the EBR-II Problem

products not included in the burn chains were
replaced by a dummy isotope. In the case of the
EBR-Il problem, more detailed burn chains were
used. They were constructed using total 28
nuclides including 19 actinide isotopes from U-
234 to CM-246 shown in Figure 1. Fission,
capture, and (n,2n) reactions were considered for
all heavy isotopes, and @ and 8 decays were also
taken into account as shown in Figure 1. Four
lumped fission products were used to represent
the fission products, and two burnup indicators
{La-139 and Nd-148) were explicitly included.
Two dummy isotopes were used to represent the
other end products not included in the burn
chains.

For each of these three problems, one typical
burn matrix was selected, and its exponentials
were computed for various burn time intervals.
The infinite norms of the selected burn matrices
were 6.31, 7.88%x 10", and 4.64 x 10?2 for the
MHTGR, the 450 MWt LMR, and the EBR-II
problem, respectively. The MHTGR burn matrix
has a large norm due to the large thermal cross
sections. To test the accuracy of the matrix

exponentials calculated with the approximate
methods discussed in the previous section,
reference solutions were obtained using the
Taylor series approximation with the scaling and
squaring algorithm. In these reference
calculations, the series was summed until each
element of the exponential of the scaled burn
matrix converges within the machine precision.
That is, we summed the series until adding
another term does not alter the numbers stored in
the computer.

Prior to comparing the performance of the
series approximation methods, we first
investigated the accuracy of the reference
solutions. For this purpose, each burn matrix was
decomposed based on the similarity transformation
of the form M=XA4 X', where A4 is the diagonal
matrix composed of the eigenvalues of the burn
matrix, and X is the matrix composed of the
eigenvectors. Then the exponential functions of
the burn matrix were computed as e™M=Xe" X'
for various time steps ranging from 1 day to 360
days. Compared with these exponentials, the

above reference solutions showed the maximum
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Table 1. Matrix Scaling Factors (as Powers of Two) and Approximation Orders

Burn Time (days) 1 50 | 100 | 150 | 200 | 250 | 300 | 360

Scaling Factor 4 10 f 11| 1112 | 124 12 | 13
MHTGR Approximation Taylor 9 9 9 9 9 9 9 9
Order Padeé 4 4 4 4 q 4 4 4
Scaling Factor 0 0 0 0 0 0 0 0
450 MWt LMR Approximation Taylor 9 9 9 9 9 9 9 9
Order Pade 4 4 4 4 4 4 4 4
Scaling Factor 0 0 0 1 1 2 2 2
EBR-II Approximation Taylor 9 9 9 9 9 9 9 9
Order Padé 4 4 4 4 4 4 4 4

absolute difference in matrix elements less than
6.0x 10" for the MHTGR, 8.9x 10 for the
450 MWt LMR, and 1.2x 10" for the EBR-II,
while the largest element in each of these
exponentials is about one. These results indicate
that the matrix exponentials obtained by two
independent methods are practically the same to
each other. This confirms that the reference
solutions determined by the converged Taylor
series as described above is one of the best
solutions that can be obtained with the finite
precision arithmetic.

For each burn matrix, matrix exponentials were
computed using Taylor, Padé, Chebyshev, and
rational Chebyshev approximations, and
compared with the above reference solutions.
Each matrix was scaled such that its infinite norm
is less than or equal to 1/2. The approximation
orders of Taylor and Padé approximations were
determined as described in the previous section.
The approximation orders of Chebyshev
approximations were the same as Taylor
approximations, and those of rational Chebyshev

approximations were the same as Padé appro-

ximations. Table 1 shows the matrix scaling
factors as powers of two and the approximation
orders for each burn time interval. The burn
matrices of the 450 MWt LMR and the EBR-II
have small matrix norms due to small cross
sections, and hence they are nearly not scaled.
On the other hand, the MHTGR burn matrix is
always scaled because of the large matrix norm.
As shown in Table 1, the ninth order Taylor
series and the fourth order Padé series were good
enough to make the estimated truncation error
{(based on the inverse error analysis) less than 10
when the exponential functions of the burn
matrices are scaled such that their infinite norms
are less than or equal to 1/2.

Figures 2 to 4 show the relative infinite norm of
the error matrix in matrix exponential, i.e., the
infinite norm of the difference between the
approximate and the reference solution divided by
the infinite norm of the reference solution. As
shown in these figures, the truncation errors
measured in the infinite matrix norm are smaller
than 4.8 x 10 for all cases. This shows that the
actual truncation errors are smaller than the
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upper bound 10® used in determining the orders
of Taylor and Padé approximations. The
maximum absolute errors in matrix elements are
similar to the infinite norm errors shown in
Figures 2 to 4, although they are slightly bigger.
These results indicate that all the four series
methods are accurate enough to be used for fuel
depletion calculations. In each problem, the
truncation error generally increases as the norm
of the scaled matrix increases. This can be seen
from Figures 2 to 4 and Table 1 by observing that
the truncation error increases as the burn time
increases unless the scaling factor is increased.
The rational Chebyshev approximation appears
to be relatively less accurate than the other three
methods. This seems to be due to the scaling
algorithm, which makes the eigenvalues of a burn
matrix clustered near the origin. On the other
hand, the error of rational Chebyshev
approximation is relatively insensitive to the
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Table 2. Relative Computing Time of Series Methods (Reference Time = 1.0)

Burn Time (days) 1 50 100 | 150 | 200 | 250 | 300 | 360
Taylor 0.64310.748 | 0.754| 0.734 | 0.765:0.763 | 0.735 | 0.802

Padé 0.45710.61110.626{0.603 | 0.639|0.640 | 0.614 | 0.680

MHTGR Chebyshev 0.610|0.751 | 0.756{0.728 | 0.764|0.765 | 0.734 | 0.804
Rational Chebyshev | 0.448 | 0.610 | 0.625|0.598 | 0.636|0.636 | 0.611 | 0.675

Taylor 0.874 10.765 | 0.701] 0.649 | 0.649/0.603 | 0.604 | 0.605

450 MWt Padeé 0.520 10.471|0.454|0.404 | 0.399|0.3720.372 | 0.373
LMR Chebyshev 0.839]0.765 | 0.703| 0.650 | 0.655|0.603 { 0.604 | 0.608
Rational Chebyshev | 0.513]0.467 | 0.429|0.397 1 0.398|0.369 | 0.369 | 0.371

Taylor 0.51410.418|0.399|0.423| 0.424]0.466 | 0.445 | 0.447

Padé 0.29410.240 | 0.229| 0.260| 0.260| 0.303 | 0.290 | 0.290

BB Chebyshev 0.5090.416]0.397{0.421 | 0.422|0.464 | 0.443 | 0.444
Rational Chebyshev |0.29210.2390.2300.261 | 0.260|0.301 | 0.289 | 0.289
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magnitude of the matrix norm. The Chebyshev
approximation shows error behaviors similar to
the Taylor series. Compared to Taylor or
Chebyshev approximation, Padeé approximation
shows similar errors for the 450 MWt LMR and
EBR-II problems, but bigger errors for the
MHTGR problem. It is considered that the
relatively bigger error of Padé approximation for
the MHTGR problem results from the error
introduced in the inverse of the denominator due
to the roundoff errors, since the transmutation
matrix has relatively widely spread eigenvalues.
Table 2 shows the computing times of four
series methods relative to the reference
computing time as a function of burn time
interval. The reference solutions take more time
as the burn time interval increases. The
computing time of the reference solution also
increases more rapidly as the matrix size is getting

bigger, i.e., more nuclides are included in the

burn chains. In the aspect of the computational
efficiency, the Chebyshev approximation is
similar to the Taylor series, while the rational
Chebyshev approximation is similar to the Padé
approximation. As shown in Table 2, the rational
approximations are ~1.7 times faster than the
polynomial approximations for the LMR
problems whose burn matrices have small matrix
norms. In the case of the MHTGR burn matrix
whose norm is relatively large, the rational
approximation is ~1.2 times faster than the
polynomial approximations.

4. Conclusion

Series expansion methods to compute the
exponential of a matrix were compared by
applying them to fuel depletion calculations.
Specifically, Taylor, Padé, Chebyshev, and
rational Chebyshev approximations were
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investigated by approximating the exponentials
of burn matrices by truncated series of each
method. The scaling and squaring algorithm
was also employed in order to avoid the
catastrophic cancellation occurring in the finite
precision arithmetic and to reduce the
computing costs.

The computational accuracy and efficiency of
these methods were tested by performing various
numerical tests using one thermal reactor and two
fast reactor depletion problems. In order to test
the accuracy, the reference solutions were
obtained by the converged Taylor series method
with the scaling and squaring algorithm. The
accuracy of the reference solutions was also
tested by comparing them with the exponential
functions determined by the similarity
transformation method.

The results indicate that all the four series
methods are accurate enough to be used for fuel
depletion calculations although the rational
Chebyshev approximation is relatively less
accurate. They also show that the rational
approximations are more efficient than the
polynomial approximations. Considering the
computational accuracy and efficiency, the Padé
approximation appears to be better than the other
methods investigated in this study. Its accuracy is
better than that of the rational Chebyshev
approximation, while being comparable to Taylor
series or Chebyshev approximation. On the other
hand, its efficiency is similar to that of the rational
Chebyshev approximation and is better than
Taylor series or Chebyshev approximation. In
particular, for LMR depletion calculations, it is
faster than Taylor series or Chebyshev
approximation by a factor of ~1.7.
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