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Abstract

DYLAM (DYnamic Logical Analytical Methodology) and its related methodologies are
reviewed and found to have many favorable characteristics. Previous studies have shown that
the DYLAM methodology represents an appropriate tool to study dynamic analysis. A hybrid
model which is a synthesis of the DYLAM model, a system thermodynamic simulation model
and a neural network predicative model, is implemented and used to analyze dynamically the
CANDU pressurizer system. This study demonstrates that the hybrid model for system reliability

analyses is effective.

1. Introduction

In recent years the growing sentiment that
system dynamic and their interaction with the
random evolution of component or operator states
was inadequately treated by classical methodology
resulted in the development of new models[1].
These new models are reviewed in this paper.

The usual approaches for probabilistic accident
evaluation do not satisfactorily take into account
the dynamic aspects of the random interaction
between the “physics” of the transients and the
“logic” of the system. The presence of control
loop, the human interventions, protection system
and failure delay system which the occurrence of
cut set causes a top event condition only after a
significant condition and a significant time delay
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are difficult to treat{2],[3]. In order to remove these
limitations and to fill the gap between the need of
more realistic analysis and available tools, dynamic
methods have been developed. Among these
dynamic methods, Discrete Event Trees (DYLAM)
is particularly suitable for treating complex

dynamic systems comparing other dynamic

methods.

2. DYLAM(Dynamic Logical Analytical
Methodology)

2.1. Basic Features of the DYLAM Approach
The DYLAM method can be seen as a systematic

attempt to combine the stochastic and physical
behavior. It is different from other traditional
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techniques such as Event/Fault tree analysis
because the impacts of hardware system failures
on the progress of physical parameters are
immediately evaluated by solving the governing
equations for new system conditions. Since the
DYLAM consider the process simulation and
changes of the system structure due to control and
due to random events in a combined way, it can
be seen that the DYLAM has the capability to
perform a systematic and dynamic analysis.

The way in which a fault tree model is
constructed and then analyzed is as follow. At first,
the undesired condition for the system is identified
and then the fault tree is constructed by top-down
deductive reasoning by linking the TOP event to
its more proximate causative sub events and these
down to the primary events. On the other hand,
DYLAM is based on bottom up procedures for
identifying the sequences of events that can lead to
undesired conditions. Component modeling
consists of identification of the different failure or
degradation states in which a component may be.
Once the components have been modeled,
implicitly, the system has been described for all its
possible states(4], [5].

On the other hands, there are concerns that
DYLAM cannot handle a complex system due to
the combinatorial explosion of the generated
sequences. Thus, in real application, it should
deploy cut-off approach by which may decrease
the accuracy of the result.

2.2. The Basic Steps of DYLAM

The basic steps to implement DYLAM can be
summarized as follows{1], [3].

2.2.1. Component Modeling

DYLAM analysis proceeds bottom-up. No
explicit model needs to be established for the

system. However, the different failure or
degradation models for the components
constituting the system should be constructed, and
then the component models have to be associated
with the probability parameters which
characterised the system states, and then the state
transitions with a mathematical equation need to
be calculated to describe the physics of the
component those conditions.

Following component’ s transition probabilities
can be modelled;
(i) Constant probabilities;
(ii) Stochastic transition;
{iii) Functional dependent transition;
(iv) Stochastic and functional dependent

transitions;

(v) Conditional probability;
(vi) Stochastic transition with variable transition

rates;
2.2.2. System Equation Modeling

To implement the system, non-linear algebraic
equations have been solved. Considering large
computational times, the physical models to be
adopted should be as simple as possible
compatible with the requirements of the analysis.

2.2.3. Top Event Definition

The next step is to define undesired system
states. These are defined in physical quantitative
terms rather than hardware states and Top event
analysis determines when a particular accident

sequence simulation should be terminated.

2.2.4. Event Sequence Generation Rules

To exploit all possible accident sequences,
following procedure is applied; Firstly starting at
t=0 and some user-defined initial state, secondly
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the system physical model is used to determine the
system variable value change in the next step At;
thirdly at the end of the first time interval (0, Af),
all possible system state transitions are identified
and transition likelihoods are calculated.

When the probability of the initial sequence
becomes less than or equal to a fraction of the
initial probability,

P(As, ) < P(Ao,to) * Wlim

where WIim : the fractional probabilistic
threshold,

P(Ao,to) : the initial probability,

P(Ao,t) : the probability of the initial

sequence at t

branch point is triggered. Here P(A t) consists of

the probability of remaining in the initial state and

birth probability for the descendent sequence. If

the probability satisfies the upper condition,

branch point is generated. These new states are

then used to provide boundary conditions for the

physical variable updating. Until an absorbing state

is reached, all possible event sequences

continuously are generated in the same manner.

3. Simulation

In order to better understand the features of
DYLAM code when applied to the reliability
analysis of a dynamic system, dynamic behavior of
a CANDU type pressurizer has been chosen as a
case study. The preparation works are required to
implement CANDU pressurizer model using
DYLAM and also to describe DYLAM results
~ obtained.

A hybrid model has been developed for assessing
pressurizer transient. The hybrid model is
composed of 3 parts :

i ) DYLAM code;

i} System thermodynamic simulation code;

iii) Neural network code.

Since DYLAM is a simulation-based dynamic
approach, to analyze system reliability, system
thermodynamic simulation code is needed.
However, to reduce calculation time and to
enhance the efficiency, data required for the
transient behavior of the system other than
pressurizer were generated using neural technique
model developed.

3.1. Neural Network Back-propagation
Fitting

Neural network methodology is an emerging
technology which gained considerable momentum
in the early 90’ s. Wide spread applications have
been made in e.g. medicine, finance, sensor,
forecasting, industrial measurement, plant
simulation[6], [7].

Generally, the power plant physics simulation
codes involves of a large number of variables. That
means for implementing DYLAM, it should
involve considerable physical data as required
restart values. When considering the computing
effort, this is not an efficient way to simulate
whole system on every component states in order
to obtain the behavior of a subsystem(8], [9]. In
other word, a drawback of DYLAM is that it is a
total system technique and can be relatively
inefficient because of very many variables involved
to get a restart values and considerable
computational time required if one is wishing to
focus on a particular subsystem such as the
pressurizer.

Here, the neural network was used for estimating
physical variables to implement DYLAM such as
SAMSON(Sever Accident Management System
On-line Network) uses expert systems as well as
neural networks trained with the backpropagation
learning algorithm to make prediction[10].

In developing a model which represents system
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behavior, it is the topology of the network,
together with the neuron, or node, processing
function, which determines the accuracy and
degree of the representation.

The most popular method for learning in
multilayer is called back-propagation. Example
inputs are presented to the network, and if the
network computes an output vector that matches
the target, nothing is done. If there is an error ( a
difference between the output and target), then
the weights are adjusts to reduce this error. Using
the back-propagation algorithm, the weight update
rule is

Wiie—Wiji+a x aj x Erri xg' (ini)

is the
derivative of the activation function g that

where Err i is the error (Ti - Oi), ¢

transforms the weighted sum into the final value as
the unit’ s activation value aj, @ is the learning rate
and Wij,i is the weight on the link from unit j to
unit i{11], [12].

When figure predictions rely on previous network
outputs which are fed back to network inputs, the
usefulness of the neural network model has been
frequently noted. Since this application describes
system dynamics, the integration of dynamics into
the network should be required. The most concise
network representation of a dynamic system is
obtained by using network inputs comprised of
past input and output data. In this application (Fig.
2), the following configurations for process

modeling, so called predictor structure, has been
adopted.

In this application 45 event sequences are
trained and applied to above network
configuration, and it generates nonlinear equation
to represent system behavior. The reason why 45
sequences are chosen is that using 10 time steps
and 2 components generates 1;C, X 2 possible
failure sequences. It is reasonable to say that
these sequences explain the system behavior
generally. The applying activation rule for this
study is Sigmoid function (1/(1+e ™).

In neural network model, for input data, outlet
header pressure at previous time (P,-,), outlet
header temperature at previous time (T..,), surge
flow rate at pervious time (F, 1), power fraction,
pressure in pressurizer (P), pressurizer level (L),
and heat generated in pressurizer (Q) are needed.
And outlet header pressure (P,), outlet header
temperature (T) and surge flow rate (F) are
updated.

These trained data generate a non linear
equation. The computer code used to generate
training data was the CANDU simulation code
which is under development in IAE {Institute for
Advanced Engineering)

The following figure (Fig 3) shows the back-
propagation neural network used to model the
performance of a pressurizer during the power
transition.

3.2. DYLAM Modeling

The stepback power transient procedure was
chosen to simulate the behavior of the pressurizer.
Pressurizer is composed of heaters and bleed
valve. In step power transient procedure, the
steam bleed valve does not act. So, in this
application, only heaters need to be considered.
Furthermore to reduce calculation time

component grouping rule was adopted.
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Fig. 3. Typical Feedforward Neural Architecture.

Component 1 represents a variable heater and
component 2 represents four on-off heaters.

Two different top conditions depending on outlet
header pressure were chosen. When the outlet
header pressure is below a prescribed value, the
fail Top condition is triggered. The mission time is
100 seconds and during the mission time, reactor
power is reduced from full power by 60 %.

The following assumptions were made to use
DYLAM :

* The components failure behavior are statistically

independent of each other
» All the components have the same nominal

conditions at time zero.

» A failed component can not be repaired during
the mission time.

As mentioned in the previous section, data
required for the transient behavior of the system
other than pressurizer were generated using the
neural technique mode! developed for the present

neural network.
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3.3. Numerical Results

To demonstrate the thermal hydraulic model of
pressurizer combined with neural network
modeling, stepback power transient event was
simulated as a case study. The probabilities of
TOP event (see 3.2) are calculated with two
different top conditions depending on outlet
header pressure.

CASE 1
When the components have a probabilistic
behavior that depends on time according to

constant transition rates between states, the

following assumptions are made :

« All the components behave stochastically

* The failure rates of the components are A,=3.0
X 107% 4,=7.0x 10°* respectively for

component 1, component 2.

CASE 2
When the components have a probabilistic
behavior that depends on the time and is also
functionally dependent on a physical variable of
the system, the following assumptions are made :
All the components states are subject both to
stochastic transitions and to transitions due to the
effects of process physical variables (pressurizer
water temperature : TZ1)
« All the components are normal at initial
pressurizer water temperature
» Functional dependent transition probabilities

are .

Poo(TZ 71 305¢) = 0.8,
Pw(TZ 1 305¢C) = 0.0,
Poo(TZ | 305%) = 0.8,
Po(TZ | 305%) = 0.0,
Here, Pi(TZ1305%):

Pij(TZ | 305%¢) :

CASE 3

Po(TZ 1 305%C) = 0.2,
Pu(TZ1305¢) = 1.0,
Poy(TZ | 305¢) = 0.2,
P,(TZ | 305¢)=1.0
Probability that the
components change state
from i to j when TZ1
approaches 305%¢ from
below that temperature
Probability that the
components change state
from i to j when TZ1
approaches 305%¢ from

above that temperature

When the components have a probabilistic
behavior that depends on time according to
variable transition rates between states which are
function of a process variable, the following

assumptions are made :
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« All the components have the transition rates
which are function of TZ1(including time).

« All the components are in normal condition at
the initial pressurizer water temperature.

« Variable transition rates of between the states (i)
TZ1 < 305%¢, ii) TZ1 > 305%¢C)are:

When TZ1 < 3057, A=30x10"
A, =7.0x10"3

When TZ1 <3057, A =3.0x10"°
A=7.0x10"

Here, it should be mentioned that A, and A, are
not the values of actual plant database instead

arbitrarily chosen.
4. Discussion and Conclusions

The pressurizer dynamic behaviour during the
stepback plant operation was analysed using
DYLAM. The simulation results are shown in
Fig.5. Comparing with CASE1, CASE3 generates
higher TOP event probability while CASE2 can
generate higher TOP event probability than
CASE3. The reason is that CASEZ2 has high
functional dependent transition probabilities at
TZ1=3507T also CASE3 has higher transition
rates when TZ1<350 ¢ than CASE1.

Using the dynamic analysis required the use of
time-consuming implicit algorithms and other
sophisticated solution methods to solve systems of
differential equations. In order to overcome these
difficulties, a hybrid model which is a synthesis of
the DYLAM model, a system thermodynamic
simulation model and a neural network predicative
model, has been used and shows the
computational efficiency. This study has values in
which this is the first attempt to combine DYLAM
and neural network model. By this study, we
considered particular features of dynamic reliability
analysis of DYLAM. This study offers further
development of the present hybrid model using a
more realistic neural network predicative model

with real failure data of the component.

In summary, from the present study, the
following conclusions can be drawn

1) The major advantage of DYLAM related
approach is that it can realistically model
physical behavior, since it includes the physical
equations governing system behavior. But, it
should be noticed that major advantage of
DYLAM is limited due to the simplified T/H
model.

2) DYLAM has its particular value in that it can
provide a comprehensive and structured
approach for studying dynamic problems.

3) Use of DYLAM is unrealistic when used to
analyze complex system without introducing
truncation rules that can effect accuracy of
representation.

4) It is demonstrated that an effective methodology
for system reliability analysis is a hybrid model
which is a synthesis of the following three
models : i) DYLAM model; ii} system
thermodynamic simulation model; iii) neural
network predicative model.
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