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In general, the laminated rubber bearing (LRB), a composite structure laminated with the
elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships
between the restoring force and shear deflection. The representative nonlinear characteristics
of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening
effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic
shear deflections affect the horizontal stiffness and the damping characteristics. The hardening
behavior of LRB in large shear deflection region results in an increased horizontal stiffness and
therefore, has a great impacton the seismic responses. In this paper, the seismic response
analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into
account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The
results on seismic responses are compared with those obtained using the widely used hysteretic
bi-linear model. The new model is found to reveal the greater amount of peak acceleration

response.

1. Introduction

In general, earthquakes have been treated as very
important design loads for nuclear power plants
including various associated structures such as
building, bridge, and so forth. Especially in nuclear
steam supply system, these loads dominantly
control the structural design margins of systems
and components. Therefore, the reduction of the
seismic loads has received the worldwide attention
for the sake of economy and safety of the nuclear
power plants. Recently, as one of the options, the
countries with advanced nuclear technology are
trying to develop the seismic isolation technology
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using the laminated rubber bearing [1,2].

The seismic responses of seismic isolation
structure are significantly improved compared with
those of a non-isolated structure [3,4]. For the
seismic isolation design, it is absolutely necessary
to develop the numerical analysis model for a
seismic isolator used in design.

The seismic isolation device considered in this
paper is the laminated rubber bearing, which has
high damping characteristics. This bearing shows
a very complex non-linear hysteretic behavior in
relationship between the restoring force and the
shear deflection. There are several analysis
models to represent the hysteretic behavior such
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as the R-O model, the rate model [5] and the
simple hysteretic bi-linear model, the modified
hysteretic bi-linear model [6], and so forth [7,8].
Usually, for modeling of the laminated rubber
bearing, the bi-linear model is used because of its
simplicity. However, it is not capable of
considering acomplex behavior of the laminated
rubber bearing. As shown in Fig.1, the hysteretic
behavior of the laminated rubber bearing is
severely changed with cyclic shear deflection [9].
This change is related to the variations of the
stiffness line and the vield loads with cyclic shear
deflections.

In this paper, as extension of the previous model
proposed in reference 6, the modified hysteretic
bi-linear model base on the simple bi-linear
model, which can consider both the hysteresis
loop change and the hardening behavior, is
proposed. The seismic time history analyses using
the proposed model of the laminated rubber
bearing are carried out for a seismically isolated
cylindrical tank. From the comparison of the
seismic responses obtained using the proposed
model and the simple hysteretic bi-linear model, it
is examined if the proposed model can give more
accurate results than the simple hysteretic bi-
linear model.

2. Numerical Modeling of a Seismically
Isolated Structure

2.1. Review of General Formulations
In general, the governing equations of motion of
a seismically isolated system can be represented

with mass, damping and stiffness matrix as

follows:
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where x, indicates the relative displacement

vectors to the input motion and X, indicates the
acceleration input motion. The forcing vector, F,
in equation (1) is the restoring force of a seismic
isolator.

In this paper, the Runge-Kutta numerical analysis
algorithm is used to solve the equation (1). To use
this algorithm, the second order system of
equation (1) should be transformed into the first
order differential equation by using
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Then, the equation (1) can be transformed into the
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first order differential equation with some
arrangements by equations (2) and (3) as follows:
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2.2. Hysteretic Bi-Linear Model of the
Laminated Rubber Bearing

Fig.1 shows the experimental results of a
complex hysteretic behavior for the 1/8 scaled the
laminated rubber bearing, which is 15cm
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Fig. 1. Test Results of the Laminated Rubber
Bearing
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diameter, 29 rubber layers and 3.5¢m total rubber
height, for cyclic shear strain ranges of 100%,
200% and 300%. In figure, we can see that the
changes of primary stiffness line and yield loads
are occurred according to the maximum cyclic
shear strains and the hardening behavior appears
at over 100% shear strain.

For numerical analysis model using simple
hysteretic bi-linear model, the forcing term in
equation (4) is expressed with force equilibrium
conditions when stiffness of the laminated rubber
bearing follows primary stiffness line, K; in Fig.
2(a) as follows:

Fo=Kix +Y, ()

where Y is the yield load.

When the stiffness of the laminated rubber
bearing follows the secondary stiffness line, K, in
Fig. 2(a)}, we can express the restoring force of the
seismic isolator with considering the original
coordinates shifting technique in the restoring
force and displacement coordinates as follows:

Flso = K2(xr - xshlfl)y (6)

where x. is the shift value of an original
coordinate, x. From equations {5) and (6), the
stiffness of the laminated rubber bearing modeled
by simple hysteretic bi-linear technique is just
expressed with K, or K values. The yield load, Y
is a constant with + values. In hysteretic bi-linear
model, K; line is called as the primary stiffness
line, which controls the seismic isolation
frequency and K line is called as secondary
stiffness line, which may affect the damping
characteristics of the seismic isolator. To apply
this model to actual design of a seismically
isolated structure, these variables should be
determined by the experimental results of the
mechanical characteristics of the laminated rubber
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bearing.

After substituting equation (5) and equation (6) to
equation (4) and arranging each term, the
equation (4) is rewritten as follows:

I 0
MTIR] -[M]"[CJ{”}*{-[M]"qu{fbHP}h)] @

In equation (7}, the stiffness matrix [K] includes
the stiffness of the seismic isolator, K; or K,. The
vector form {P}, has Y or K» xuy values for the
degree of -freedom of the seismic isolation
direction at a given nodal point.

As shown in test results of Fig. 1, with increasing
the cyclic shear deflections, the yield loads and the
primary stiffness lines are changed, and the
hardening behavior is occurred. Therefore, the
simple bi-linear model shown in Fig. 2{a) is not
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Fig. 2. Hysteretic Bi-Linear Models
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valid any more to represent the detail hysteretic
characteristics of the laminated rubber bearing. To
consider the hardening behavior, the modified
hysteretic bi-linear model has been proposed in
reference [6], which is shown in Fig. 2(b).
However, the changes of the yield loads and the
primary stiffness lines can not considered in
previous modified bi-linear model.

In this paper, as extension of the previous
modified bi-linear model, the numerical model of
the laminated rubber bearing using the
parametric variations of the yield loads and the
primary stiffness lines is proposed. Therefore,
when the stiffness follows the primary stiffness
line, the restoring force of the laminated rubber
bearing in equation (5) can be rewritten as
follows:

F,(0)=K,(9) 6+L,(9) (8)

where subscript n means the nth multi-linear
primary stiffness line.

In above equation (8), the primary stiffness lines,
K. and vield loads, Y, are the functions of the
maximum cyclic shear deflection, which is defined
in one complete cyclic behavior. To consider the
vield load variations, the following parameter

equation is used.

A=l

Yn(s) =ZSM[KM(5)-KM+](5)]+YI(6)_ forn22 (9)
m=1

In equation (9), S, is the shear deflection for the
mth point of the hardening region in Fig.2(c).
The parameter equations of the stiffness lines and
the vield loads can be expressed by a polynomial
or any other equation forms with the maximum
cyclic shear deflections. These functions can be
determined based on the test results of the

laminated rubber bearing.
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Table 1. Natural Frequencies of the Exampled

Cylindrical Tank
Models 1st natural frequency 2nd natural frequency
1. Lumped mass model 14.51Hz 52.48 Hz
{with head mass}
2. ANSYS 3-D model 15.17Hz 51.03Hz
Ervor between 1 and 2 435% 284%

3. Examples of Application
3.1. Seismic Analysis Model

In this paper, the seismic time history analysis for
a cylindrical tank is carried out. Fig. 3 shows the
dimensions of the cylindrical tank and the
developed seismic analysis model using the
lumped mass and stiffness technique. As shown in
Fig. 3, the total height of the cylindrical tank
including top head is 19.82m and the thickness is
0.05m, which represents a thin shell structure
similar to reactor vessel of typical LMR (Liquid
Metal Reactor).



Seismic Response Analyses of Seismically Isolated Structures ---

1.0
r
8
]
8 4L
2
™
=
§ 4
§ F
g i
<
2 -
Do L 1 1 i
0.0 .8 1.0 1.5 2.0
Frequency (Hzx)
(a) Acceleration Response Spectrum
40
30
g
g 2f
E [
3|
s 10 -
a
0 [ 1 1 L
0.0 5 1.0 1.5 2.0

Frequency (Hz)

(b) Displacement Response Spectrum

Fig. 4. Response Spectrum of 1940 EIl
Centro(NS) Input Earthquake

Table 1 shows the natural frequencies of the
cylindrical tank. From table, the results for the
lumped mass model are in a good agreement with
those for the 3-dimensional finite element model
using the ANSYS code. Therefore, the seismic
analysis model is well established to represent the

detailed dynamic characteristics of the cylindrical |

tank.
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Fig. 5. Characteristics of Maximum Peak
Responses Versus Isolation Frequencies

3.2. Determination of Seismic Isolation
Frequency

The input ground time history used in analysis is
the NS component of the 1940 Ei-Centro
earthquake. Fig. 4 shows the response spectrum
of acceleration and displacement of the input
motion. In seismic isolation design, the
acceleration and the displacement seismic
responses are both important to determine the
optimal seismic isolation frequency. As well known
in a seismically isolated structure, these two
responses are contrary to each other. Therefore,
to find the optimal seismic isolation frequency
minimizing both acceleration response and
displacement response of the exampled cylindrical
tank, the seismic time history analyses are carried
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Fig. 6. Analysis Results of Non-Linear Behavior
of the Laminated Rubber Bearing

out using the simple hysteretic bi-linear model of
the seismic isolator. Fig. 5 shows the maximum
response spectra for each seismic isolation
frequency. From these results, the optimal seismic
isolation frequency can be determined as 0.7 Hez.

3.3. Nonlinear Seismic Time History
Analysis

The nonlinear seismic time history analysis with
the seismic isolation frequency, 0.7 Hz obtained
from section 3.2 is carried out using both the
simple hysteretic bi-linear model and the proposed
modified hysteretic bi-linear model. The damping
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of the superstructure is assumed as 5% for all
modes. The data used in simple hysteretic bi-
linear model are as follows:

Ka=3.31x10%gf/cm,
K=1.33x10%gf/cm,
Y = 4.32x104kgf

For the modified hysteretic bi-linear model, it is
assumed that this model has two hardening
deflection ranges. The data used for this hardening
model are as follow:

Kot = Ko, for 0.00cm < § <4.57cm
Km = 1.2K,;, for4.57cm < $<6.10cm
Kmi = 2.5K,, for6.10cm < S
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For comparison with the simple hysteretic bi-
linear model, the secondary stiffness line, K,z is
modeled with the same value as that of the simple
hysteretic bi-linear model.

For the parametric variation of stiffness lines and
vield loads, the following models are used for

examples.

Yield Load : Y=Y"(1.0 + |8})
Primary Stiffness Line : K; = K’1(1.0- 181)
Secondary Stiffness Line : K;=K’5{(1.0- 181}

where superscript (') means the constant values
for zero shear deflection of the laminated rubber
bearing. The unit of shear deflection in above
parameter equations is meter.

Fig. 6 shows the hysteretic responses of the
laminated rubber bearing for the 1940 El Centro
(NS) input earthquake. From these results, the
modified hysteretic bi-linear model has the similar
behavior to that of the simple hysteretic by-linear
model in global hysteretic motion but shows larger
restoring forces in large deflections than those of
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simple hysteretic bi-linear model. This is due to the
hardening model used in larger deflection regions.

Fig. 7 shows the acceleration time history
responses at node 4, i.e. top head. In this result,
the two models show similar waveforms but the
maximum acceleration obtained using the
modified hysteretic bi-linear model is slightly larger
than the result obtained using the simple hysteretic
bi-linear model. Fig. 8 shows the displacement
time history responses at node 4. The waveforms
and peak levels of displacement responses for
both models are very similar.

Fig. 9 shows the distribution of the maximum
accelerations along the height of the cylindrical
tank. From these results, we can see that the
seismic acceleration responses of seismically
isolated system are significantly reduced than
those of non-isolated system and this system has
almost no acceleration response amplifications.
And the modified hysteretic bilinear model gives
more conservative results than simple hysteretic bi-
linear mode!.

For substantiating the proposed model, the
comparison of response results obtained by using
the previous modified model in ref. [6] and the
proposed model is carried out. Fig. 10 shows the
hysteretic responses of the laminated rubber
bearing. In figure, we can see that the response
prediction of the laminated rubber bearing using
the proposed model gives more similar hysteretic
behavior compared with actual test results shown
in Fig.1 than model of ref. [6].

4. Conclusions

The laminated rubber bearing is widely used as a
very useful device to reduce the seismic responses.
To design the seismic isolation structure, a new
numerical analysis model for the laminated rubber
bearing has been proposed. The proposed
numerical analysis model can consider the change

of yield loads and the stiffness lines, as well as the
hardening behavior in large shear deflection
regions with cycling. Applications of the proposed
mode] show comparable displacement responses
but the larger peak acceleration responses than
those of simple hysteretic bi-linear model. From
the result, it is suggested to take into account the
changes of mechanical characteristics of the
laminated rubber bearing in design of seismically
isolated structures because the larger computed
acceleration would lead to the more conservative
design.
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