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Abstract

The nuclide transport in the one-dimensional porous medium is considered as a first step in dev-

eloping a decay chain transport in multidimensional inhomogeneous media. A method of solving
conventional advection-dispersion equation with decay chain of arbitrary length by using the met-
hod of characteristics (MOC) is introduced. In specific cases where the advection are dominant rat-
her than dispersion, the method is known to be useful : one of the most distinctive advantages in
applying the model is that the MOC minimizes the numerical dispersion, which is distinguished in

such common numerical schemes as finite element method and finite difference method. The sug-
gested model is considered to be effective through several illustrations for the case that decay chain
of arbitrary length is involved during transport, which is difficult to solve by standard numerical solu-
tions if the medium becomes more complicated.

1. Introduction

For most practical problems concerning nuclide
transport in the medium around the high-level radio-
active waste repository, the conventional advection-
dispersion equation with decay chain terms is usually
considered. In such case, it is very common to obtain
the solution for breakthrough curve for nuclide con-
centration numerically. However many such numeri-
cal approaches are usually suffering from problems
associated with numerical dispersion and spatial os-
cillation near the concentration front Furthermore,
application of restrictive criteria for the spatial and
temporal discretization results in fine grid size and
small time steps making the solution impractical in
applying to real scale transport simulation.

In many cases the advection is considered to be the
dominant mechanism rather than the dispersion for
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the transport in natural barrier around the repository,
which facilitates the method of characteristics (MOC)
in solving the adwection-dispersion equation. Since
Garder et al. (1964) implemented MOC in the trans-
port problem by utilizing particle tracking to simulate
the characteristics line in conjunction with finite dif-
ference method, many extended works have been
carried out. (Konikow and Bredehoef, 1978 ; Reddel
and Sunada, 1970 ; Khaleel and Reddel, 1986) Also,
recently, Goode and Konikow (1989) presented the
MOC model including single decay and sorption
phenomena and Zheng (1993} further extended to
three dimensional solute transport.

In this paper as another extended work, an approach
to implementation of decay chain of arbitrary length
in one-dimensional advection-dispersion equation by
utilizing MOC is discussed.
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2. Model

The governing equations of advection-dispersion
with decay chain assuming one-dimensional semi-fi-
nite medium are
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where ¢; is the concentration of nuclide component
I, & and R are the first order decay constant and the
retardation coefficient of component / in the one-
dimensional medium. All other symbols have their
conventional meaning. Above Equations are subject
to the following side conditions
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where Bw is the coefficient of the Bateman equation
represented as
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and c% is the initial concentration of the kth member.

In this study no flow boundary condition at the
outlet of the system which is a special case of a con-
stant flux boundary condition is exclusively con-
sidered. However, different kind of boundary condi-
tions can be incorporated into the model considered
here. With no flow boundary condition, the transport
across the outlet boundary, i.e., out of the final node

of the system is precluded.
In Eq.(1) (8c/ét represents an Eulerian expression

representing the rate of change in nuclide concen-
tration at the fixed point in space, which also can be
expressed as a Lagrangian form introducing total de-
rivative Dc;/Dt, which implicates the rate of change in
nuclide concentration ¢ along thie pathline of the nu-
clide particle and also can be interpreted as a char-
acteristic curve of the velocity field.

Therefore for nuclide I, Eq.{1) can be transformed
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where 4=0 when [=1.
Above Eq.{3) is approximated again through the fi-
nite difference
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where ¢i** is the average nuclide concentration at
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time (t+At) and ¢ is the average nuclide concen-
tration in the specific grid block at time t due to
advection alone. Let asterisk(*) mean this intermedi-
ate time level.

Then Eq.(3) is expressed as
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Meanwhile Eq.(1) has one characteristic as follows :
dx _ v
dr R (6)
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Along these characteristic curves, Eq.{1) is reduced
to RH.S. of Eq.{3) and then Eq.{1) can be approx-
imated as a coupled form of Eq.(5) and Eq.(6). This
is accomplished by adopting a finite difference grid.
First, Eq. {6) Is solved by introducing a set of moving
particles in cell of the finite difference grid block and
then tracking the movement of these particles in
turn. By utilizing the information about these particles
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for their position and concentration associated with
it, the concentration at each grid due to advective

_ transport can be evaluated. Following this, Eq. (5) is
used to further evaluate changes in each nodal con-
centration resulting from hydrodynamic dispersion
and the sink, i.e., radioactive decay chain.

As soon as a set of moving particles with initial
concentration having their own coordinates in the
one-dimensional x direction are introduced, they will
relocate in the new time level according to the fol-
lowing first-order Euler algorithm for pth moving par-
ticle :
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Then, when all the moving particles have been re-
located, each grid block is temporarily assigned a con-
of the con-

centration ¢** by taking the average ¢, "*

cenirations of all the moving particles lying inside the
grid block at time level {t+ At). This completes the
transport due to advection only. Next, Ac which rep-
resents the additional change of the concentration

owing to both dispersion and radioactive decay is cal-
culated. Once Ac is evaluated, then each moving par-

ticle is assigned a modified concentration according
to following Eq. (8) :

1+

Coi
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and the nuclide concentration in the specific grid is
then calculated as

C’MA: =C,’ +ACII+AI (9)

To evaluate the additional term for concentration
changes only due to hydrodynamic dispersion, Ac in
Eq.(8), which is identified again as the last term of
Eq.(5), is approximated by utilizing the explicit center-
ed finite difference scheme with temporary exclusion
of the decay chain term for simplicity in the form as

AT = D, - At

b= m—)z—(cf,.»-u -2¢),+¢,)  (10)

Also in order to achieve numerical stability using time

stepping difference scheme, the size of the temporal
step At must be chosen properly to satisfy certain
stability criteria. To this end usual stability check cor-
responding to criterion normally used in the explicit
finite difference scheme is made. According to such
criterion,

R 2
2D,

forall grids  (11)
In addition, another criterion related to the relocation
of moving particles in accordance with Eq. {7) should
be made by utilizing familiar Courant-Friedrichs con-
dition for the finite difference scheme of advective
transport equation as follows (Huyakorn and Pinder,
1983):

VA< (12)
R, -Ax

In the case of presence of decay term as shown in
Eq.(1), decay chain can be simulated by considering
the decay as change of chemical character ; the char-
acter of particles representing the parent nuclide is
not changed during their decay, whereas the charac-,
ter of the moving particles representing the daughter-
s has been changed while they are generated due to
decay of the parent and keep on transporting. The
number of daughter particles generated accordingly
are equal to the number of parent decayed. After
generation of the daughter it follows the same des-
tiny to their parent.

Suppose that a moving particle representing the
parent (I-1) is released at time 0 and reaches x=x
during At. Then the particle number of parent will be
reduced to

N, (xl ’At) = N’o_le—x,_,m (13)

Naturally the particle number of daughter nuclide will
then be generated according to
N (x,At)= N (1-e) (14)

On account of the linearity of Eq.{(1) the solutions for
the concentration of a Ith member could be given by
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¢ (x.t)= c‘(')(x,t)
=M (@)
o(xt)=c (x,1)+c; (x.1)

............... (15)

where c(x t) and ¢®(x, t) are precursor contribu-
tions stemming from cix t) and c-i(1—e "), re
spectively.

The algorithm utilized is graphically shown in Fig.1.

3. Results and Discussion
3.1. Numerical Implementation

The calculation is carried out by following the al-
gorithm which is briefly described as: (1) locating of
moving particles in each grid block i;(2) relocating
the moving particles according to the advective trans-
port ; (3) calculating temporary concentration due to
advection only by awveraging the concentrations of
moving particles ; (4) updating the concentration by
considering dispersion ; and finally {5) linearly sup-
empositioning the concentration for chain decay and
going to next time step.

3.2. Sensitivity Study

Since it is very difficult to obtain the optimum cri-
teria theoretically by which the validity of numerical
calculation can be retained, experimental calculations
with several numerical parameters are of necessity.
To this end in this study sensitivity to two numerical
parameters such as grid size Ax and number of mov-
ing particles per each grid block are carried out with
fixed time step size for both cases. Even though the
results are not presented in this study, the sensitivity
to time step size shows no great dependency on the
results. This could be explained in following way:
advection, which is dominant mechanism of trans-

port, is simulated by Lagrangian particle tracking met-

c (x, t) Te AL

cé')(x,t)+c§2)(x,t)

c,(x,1)

c,(')(x,t)+c,(2)(x,t)

Fig. 1. Algorithm for Chain Decay Calculation.
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Fig. 2. Sensitivities to Spatial Grid Sizes.

hod based on moving coordinates whereas only dis-
persion and decay terms are based on finite differ-
ence scheme. These parameters are chosen in the
limit of the general criteria for finite difference scheme
as described in Egs.(11) and (12).

First of all, to show the effect of grid size on the dif-
ference with analytical solution provided by Lung
{(1986), several calculations are made using several
different values for grid size when other parameters
remains fixed. The parameter values used are:v=
0.1m/yr, D=3.3%x10"°m’/yr, 1=0,023""yr,At =1.0,
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Fig. 4. Sensitivities to the Number of Moving Particles
with Ax=0.2m.

and Ax=02 to 4. The resulting profiles of these
runs for fixed temporal step size are shown in Fig. 2.
As shown in the figure, which is enlarged locally for
easily understanding, and as expected, the difference
seems to get smaller with grid size. Accordingly, gen-
erally speaking, for case of Ax<2.0m, the difference
could be believed to be negligible.

Figs. 3 and 4 show the concentration profiles at
the same time lapsed for the same parameter values
listed in Table 1, but only different grid sizes, Ax=1
and Ax=0.2, respectively. In both figures, one can
easily note that in case that using only particle per
grid gives poor results, with the large differences
from the analytical solutions, However, increasing the
number of particles per grid does not seem to neces-
sarily offer improved results greatly as compared to
the case two particles per grid is used. Also, as already .
mentioned, smaller grid size gives good results
again.

3.3. Numerical lllustration

To illustrate the model proposed in the study with
an application of the one-dimensional transport of
radionuclide decay chains, it is assumed that the de-
cay chain begins at the inlet boundary x=0. The de-
cay chain considered in the study is **Cm — *Am
— #Np — ® — Th. The reason why this spe-
cific chain is chosen is to show the capability of the
model in computing a chain more than three mem-
bers. All parameters remain the same as in the case
of sensitivity study (see Table 1} except the chain de-
cay parameter.

The initial inlet boundary concentrations are unity for
parent nuclide and zero for-all daughters with Bat-
eman type inlet boundary condition as expressed in
Eq.(2¢). Figs. 5-7 show the concentration profiles nor-
malized to initial parent concentration as a function
of distance at the time of 100 years with different Ax
and At values with one another . By comparing all
these profiles with analytical solutions one can see
that all profiles practically coincide with each other.
Meanwhile, a more figure for the case Ax=1 and
At=10 at the time of 1000 years are shown in Fig. 8.
For the practical purpose a little larger time steps
and grid sizes may be needed. In this aspect the grid
size of Ax=1 ¢an be considered to be affordable for
the case of very long time span with the time step
size of At=1 and even At =10 as shown both in Fig.
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6 and Fig. 8. A sample calculated breakthroughs as a
function of time for illustrative purpose is shown in
Fg. 9, which uses Ax=1 and At =10, respectively, at
the distance of 25 m, and the result shows good
agreement with analytical solutions.

4. Summary

Through the study the method of characteristics
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for modeling of nuclide transport has been applied
to one-dimensional problem in porous medium. As
widely known one of the most distinctive advantages
is that the MOC minimizes the numerical dispersion
which is distinguished in such numerical scheme as
finite difference method and finite element method.
Also for the case that decay chain of arbitrary length
is involved during transport, MOC is proven to be
very effective to solve as shown through several illus-
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Also through the several simulation results compar-

10640 —
? iy, ed with available analytical solution, the MOC is pos-
] . sible to be extended to the improved transport prob-
‘m? lems having both more higher dimensional medium
i and inhomogeneous media such as fractured rocks.
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