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Abstract

The reactor power control system is described in the fashion of the order increased LQR system.
To obtain the optimal state feedback gain vectors, the weighting matrix of the performance function
should be determined. Since the conventional method has some limitations, stochastic searching
methods are investigated to optimize the LQR weighting matrix. Using the modified genetic algor-
ithm combined with the simulated annealing, a new optimizing tool named the hybrid MGA-SA is
developed to determine the weighting parameters of the LQR system. This optimizing tool provides
a more systematic approach in designing the LQR system. Since it can be easily incorporated with
any forms of the cost function, it also provides the great flexibility in the optimization problems.

1. Introduction

The control design techniques have developed sig-

nificantly over the last decade. Although the PID con-

trol has been used and proved to be powerful in var-
ious fields of the applications, new control techniq-
ues are widespread at present with the computer aid-
ed control design. In the nuclear field, the plant con-

trol is one of the important issues at the present stag-

e of the digitalization. One of the control techniques
that could replace the present PID is the linear quad-
ratic regulator (LQR) method. This method is an im-
portant subset of the Wiener-Hopf-Kalman optimal
control. The most attractive feature of the LQR met-
hod is that it can provide the systematic environ-
ments for the control design. So the problem of sys-
tem design could be boiled down to the problem of
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the determining the proper weighting matrices. In re-
ality, however, it is not easy to determine the suitable
weighting matrices, particularly when the system or-
der is high. Since there is no direct method to con-
trol the frequency response characteristics during the
design process, the LQR weightings are usually de-
termined through the so-called divide-and-conquer
approach. Thus, the result is highly dependent upon
the designer’s knowledge. As a result, we have ex-
perienced the tedious and time-consuming calcula-
tions [1,2]. This experience motivated us to develop
a fast and reliable computing tool that could replace
the tremendous jobs.

To determine the proper control parameters for
the design of the nuclear power plant, we considered
in this work two kinds of the stochastic searching
methods as the candidate solution methodologies -
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one is the Simulated Annealing (SA [3-5]) and the
other is the Genetic Algorithm (GA [9-14]). Also, a
modified version of the GA is described. Finally, a
hybrid approach is proposed by combining the modi-
fied GA with the SA.

2. Optimization Goal and Stochastic Search-
ing Methods

The overall configuration of the digital reactor pow-
er control system is illustrated in Fig. 1. All the details
regarding the physical backgrounds and the system
modeling were described in Refs. [1] and [2].

To make the output follow the input command sig-

nal, the integrated error signal is augmented as a
new variable, and the resulting system becomes an
order increased regulating system (OIRS). Since this
scheme still maintains the LQR frame, its margins are
guaranteed and the tracking properties are found to
be much better than those of the ordinary feedback

system. The system equation is described as

E(h+ 1) =wEK ) Ar(k), ylk+1)=HEK) (1)

where ¢ is the state variable vector and ¥, A, H are
system matrices. The optimal performance function
of the order increased LQR is

©

(x (k) QxU)+ulkY R ulk)) (2

.
Jyo= =
B

N —

k=

<

A e, uk) Plant)__ ¥(X) |

(SRR P k)
(K —
LOR (%) | Current
Cirgff ! LA Esumator
v(X) 1 | v(k-1)
L
)+

Fig. 1. Overall Configuration of the Digital Reactor
Power Control System
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where X=(x(k) vlk})), and Q, R are the weighting
matrices, respectively.

The design purpose of the order increased LQR
system is to determine the state feedback gain K,
which, in tumn, is determined by the weighting matric-
es of Q and R. The order of weighting matrix Q is 6
having 36 elements at maximum. Since it is almost
impossible to determine all these parameters in a
conventional method, Q is commonly assumed to be
a diagonal matrix. In the previous work [2], it was as-
sumed that Q=[Q;], where Q; =0 at i#j, Q:=gq for
i=1,2, -+, 5 and Qss=r. Thus, only two variables, g
and r, are to be determined. After numerous simula-
tions, the ‘best’ values of g and r are found to be
3. e"®and 0.003, respectively. The corresponding res-
ponses of the output and the control input are show-
n in Figs 7 and 8, respectively. However, this ap-
proach still has some problems. First of all, it is hard -
to assure that the design result is the best one.

Another better solution may exist. Secondly, when
the number of unknown parameters becomes large,
it is very difficult to fix them optimally. These prob-
lems motivated us to investigate the stochastic sear-
ching methods.

Since our goal was to determine the optimal weig-
hting matrix Q in a stochastic way, we formulated the
problem somewhat simply as follows :

Fnd X= [x.x.... XG] (3)
to minimize  Cost(X) = Y |y (k)-yol+ Y lu(k)l (4)
k=0 k=0
subjectto  1.00e™® <x;, <1.00e™./ =1.2,....6 (5)
where,
X : a candidate solution vector
Xi : diagonal elements of the weighting mat-
rix Q
Cost(X) :cost function for the candidate solution
vector X
yik) : normalized output of the system at time

step k
Yo : normalized target value of the system
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output
u(k) : normalized velocity of the control rod at
time step k.

The first term of the cost function described in the
Eq. (4) indicates how well the system response y of
the candidate solution X follows the command input.
Also, the second term of the Eq. (4) means the total
traveling length of the control rod. More elaborated
cost function may be available instead of the Eq. (4).

As can be seen in the Eq. (4) above, it is very diffi-
cult to describe the cost function Cost(X) and its Jac-
obian and Hessian precisely as a function of X Thus,
no gradient-based searching methods, such as the
Newton Method and its variances [15], are suitable
searching tools for our problem. This fact implies that
a stochastic searching technique like the SA or GA is
inevitable.

The stochastic searching methods usually have the
abilities of hill climbing and backtracking [4]. The for-
mer provides the ability of escaping from a valley (io-
cal minima). The latter allows one to try a new sear-
ch from visited solutions. To determine the proper
control parameters for the design of the nuclear re-
actor power LQR control system, we considered two
kinds of the stochastic searching methods in this
work-one is the SA and the other is the GA The for-
mer is a one-point searching scheme and is suitable
for the final local search. On the other hand, the lat-
ter is a multi-point searching one and thus suitable
for the global search in the earlier searching stage
(13].

3. Determination of the Control Parameters
by the SA

The SA has been applied to several kinds of optim-

ization problems, and proved to be powerful for the
combinatorial optimization, especially when the ob-
jective function cannot be expressed analytically
[68]. Fig. 2 shows the pseudo-code of the optimal
parameter searching using the SA, where X and
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X=Initial solution Xo;
T =Initial temperature To;
while(stopping criterion is not satisfied) do
while (not yet in equilibrium) do
X’ : Random neighbor of X;
AC : Cost{X') —Cost{X) ;
Prob =Min(l, exp(—AC/T)) ;
if rand[0, 1)< Prob then X: =X’;
endwhile
Update T;
endwhile
Output best solution ;

Fig. 2. Pseudo-code of the Optimal Parameter Searching
by the SA

Cost(X) are the ones defined by the Egs. (3) and (4)
above. The main components of the algorithm are
the cooling schedule and the neighborhood gener-
ation mechanism.

Once a current solution X has been obtained, a
new solution X’ called neighbor is generated from
the current solution X through a proper neighbor-
hood generation mechanism. Whenever the neighbor
X’ decreases the cost (i. e., AC=Cost{X')—Cost{X)
<0), it is accepted as a new current solution and the
procedure continues to search for a new neighbor
from this solution. Even though the neighbor increas-
es the cost (i. e, AC>0) to a certain degree, it is
also possible that the neighbor can be accepted as a
new solution if the probability of the acceptance,
Prob=expt —AC/T), is greater than a random num-
ber chosen between 0 and 1 at that instance. Here,
AC is the cost change and T is the annealing par-
ameter equivalent to the temperature in the physical
annealing process. The stochastic search as above is
the hill climbing ability of the SA [4].

As it can be seen in Fig. 2, it is necessary to deter-
mine 1) how to delimit the initial temperature and
update it, 2) when a state is in equilibrium at an arbi-
trary temperature, 3) how to generate the neighbors,
and 4) when to stop the whole procedure. Several
studies have been reported in relation to these issues
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[10,14,15]. In this work, a neighbor X' ={X", X%,
.-, X’s] is generated from the current solution X=
[Xi, Xe, +++, Xo] as follows :

X = X, v X, crandf-11], =12, B {6)

where 8x,, is the pre-specified upper bound of the
perturbation for the parameter X;, and rand[a b]
means a number chosen randomly between a and b.
For the cooling schedule, we used the so-called
banner schedule. In other words, the temperature T*
at the k-th annealing step is updated in a simple way,
i e, T"'=o* T with x=0.8~0.95. It should be not-
iced that the small value of o implies that the system
will be cooled rather rapidly and may be frozen to lo-

cal optima. The whole procedure stops either when

the annealing parameter T* becomes less than a pred-

efined value Tmn, or when none of the neighbors
tried at T* has been accepted as a new solution. Fur-
ther details of the SA can be found at the related
works [3-5].

4. Determination of the Control Parameters
by the MGA

The GA which was first proposed by J. Holland in
1975 and revived by D. E. Goldberg [9] in the mid
1980’s, has proven to be a useful tool in a variety of
search and optimization problems over the last vears
{12-14.16,17). The GA is based on the survival-
of-the-fittest principle in nature. According to evol-
utionary theories, only the fittest elements in a popu-
lation are more likely to survive and generate their
offspring, thus transmitting their biological heredity to
new generations. In computing terms, the GA maps
a problem onto a set of (typically binary) strings to
represent a candidate solution called an individual.
Each solution is associated with a fitness value to
measure how good it is. The GA then manipulates
the most promising strings to search improved solu-
tions. By using three major operators of repro-
duction, crossover and mutation, it searches the opti-

mal design parameters of the given problem. Since

Initialize parameters of the GA ;

Randomly generate initial population as old_pop

generation == 0 ;
while (termination conditions not satisfied) do
Clear new_poputation |
Evaluate fitness of each individual in old_population ;
Update best_individual ;
while (no_of_individual < population_size) do
Select two parents from old_population based on their fitness ;
Perform the crossover upon parents to produce two offsprings ;
Mutate each offspring based on mutation_rate ;
Place offsprings to new_population ;
no_of_individual := no_of_individual +2 ;

endwhile

Renl
P

old_population with new_popul
generation 1= generation + 1 ;
endwhile

Return best_individual ;

Fig. 3. Typical Pseudo-Code of a SGA

the GA does not depend on the coupling between

the parameters, it provides more flexibility in dealing

with the concerned system. Fig. 3 shows a typical
pseudo-code of a simple Genetic Algorithm (SGA).

Throughout the repeated generation changes in
the GA, the average fitness of the candidate solu-
tions gradually increases. That is, the attributes of the
candidate solutions will be improved toward an un-
known optimal one, and some of these solutions will
converge to the globally best one from which it is
almost impossible to get further improvements. Ultim-
ately, the GA differs from the traditional searching
techniques in several aspects [11-14] :

—The GA is the direct searching method indepen-
dent of the coupling of the design parameters and
does not need any intensive system information
such as derivatives.

—The GA makes use of a stochastic search and not
a deterministic one. Owing to this feature, it can
escape from the local traps, but may tend to wan-
der around the true solution.

—The GA operates on several solutions simul-
taneously, gathering information from current sear-
ch points to direct subsequent searches.
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Modified Genetic Algorithm (MGA)

To improve the performance of the SGA, we mod-

ified the SGA by applying following schemes which
are the major improvements from the SGA :

—linear fitness scaling

— elite policy

—variable number of crossover site

—modified crossover scheme

— ancestor-pool

— periodic re-initialization of the population

Representation of an Individual

The SGA basically works on the binary strings, i. e.
, the parameter domain is to be discretized to a cer-
tain resolution. The feasible searching domain varies
depending upon not only the parameter range but
also the discretizing resolution of the parameter. The
more finely discretized the searching domain is, the
larger the feasible searching domain becomes. Con-
trary to the conventional representation of an indi-
vidual in the SGA like the form of individual =[x, x,
-+, %] where x is the design parameters, we devised
an exponential-wise representation as follow :

individual =[a, b1, az, bz, ***, Gn, bn)
with x=a;-e" i=12, -, n (7)

This kind of the individual representation is very use-
ful either when there exists little information about
the parameter range or when it ranges widely. It also

helps the GA search the dominant order of each par-

ameter, maintaining the required number of signifi-
cant digits without any drastic increase of the feasible
searching domain.

Modified Crossover Scheme

We used a modified crossover scheme instead of
the well-known bit-wise crossover to avoid the ham-
ming-cliff effects. Thus, no encode and decode proc-
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esses are required. If i is equal to the crossover site s
selected randomly, the child’s parameter C1X;, C2X
are calculated by a linear inter or extrapolation

" scheme as shown in Fig. 4. Before the crossover site,

i. e, 1S =i<s, the parameter P1X; of parent P1 is
copied to the parameter C1X; of children C1. Also,
the parameter P2X; of parent P2 is copied to the par-
ameter C2X; of children C2. After the crossover site,
i. e, s<i<n, the parameter P1X; of parent P1 is cop-
ied to the parameter C2X; of children C2. As in the
same manner, the parameter P2Xi of parent P2 is
copied to the parameter C1X; of children C1.

Ancestor-Pool and Periodic Re-initialization of the
Population

In the GA, lots of candidate solutions have to be
tested. Also, the fitness calculation usually takes the
major portion of the total execution time. In this
wark, therefore, we attempted to save the execution
time by skipping the fitness calculation for a candi-
date solution if their genetic properties (the values of
the design parameters) coincide with those of a pre-
viously visited solution (ancestor). By introducing a
pre-specified size of storage pool named hereafter an

P2X,
PIX,

() r

r=rand[-0.25,1.25]
C‘X,’ =f'P1X/+(1—f)'F’2X/
C2XI‘ =(1_’)'P1X,+f'FQX,

Fig. 4. Linear Inter/Extrapolation Scheme Used in Mod-
ified Crossover
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ancestor-pool, we could thus reduce some amount of
the total execution time in the MGA.

It is not always guaranteed that the up-to-best sol-
ution will be retained throughout the generation
changes in the SGA. Thus, the elite-policy or one of
its variations is often employed to retain these solu-
tions hoping that their offspring contributes to the fit-
ness improvement. However, the dense application

of the elite-policy may lead to a pre-maturing result

of the searching process. On the other hand, we are
sure that the up-to-best solution and its families can
never be lost undesirably by using the ancestor-pool
in the MGA. In other words, all the individuals in the
population are re-initialized periodically (e. g, after
every 5 generation change) from the up-to-best solu-
tions stored in the ancestor-pool. This periodic re-init-
jalization of the population makes the searching pro-
cess more stable and less divergent. Also, it accelerat-
es the improvements of the solutions. However, it
should be noted that too frequent re-initialization of
the population may also drive the searching process
toward a pre-maturing result. Reasonable interval of
the population re-initialization should be chosen car-
efully.

To determine the proper weighting matrices of the

LQR systemn by using the MGA, we modified the afor-

ementioned formulation as follows :

Fnd C= [51 by.ay.by..... aﬁ'bf}l (8)
to maximize  fimess(X) =1/Cost(X) (9)
subject to
Costth) = Y lylk)- yol+ Sluta)l (10}
k=0 P
X [X,‘X?‘ XG] (11)
x =a e, i=12..8 (12)
100-a <9.99, /=12 6 (13)
B -2, [=1.2.....6 (14)
where,

C : chromosome of an individual {(or a candi-

date solution)

X : a candidate solution vector

X, :diagonai elements of the weighting matrix
Q

Cost(X): cost function for the candidate solution
vector

(k) :normalized output of the system at time
step k

[t : normalized target value of the system out-
put

ulk) :normalized velocity of the control rod at
time step k

Combination of the MGA with the SA

As mentioned above, the SA and the GA have
their own advantages and disadvantages. In other
words, the SA is a one-point searching scheme and
suitable to locate the final solution. However, its per-
formance in the improvement of the solution is gen-
erally rather slow at the earlier stage of the searching
process compared with the GA. The other difficulties
in the SA are the proper design of the cooling sched-
ule and the neighborhood generation mechanism.
On the other hand, the GA is a multi-point searching
scheme and thus more efficient than the SA for the
global search in the earlier searching stage. However,
the GA also has its own drawback in that it tends to
wander around the frue solution at the final stage of
the searching process due to this multi-point search-
ing scheme [16,17]. Thus, we may expect more
improved performance in searching an optimal sol-
ution through the combination of these two methods
so that the GA should compensate the drawbacks of
the SA or vice versa. Following is our proposed al-
gorithm which we named a hybrid MGA-SA;

Frstly, pefform the stochastic random but evol-
utionary search by using the MGA for the large feas-
ible domain until a solution of pre-specified quality is
found. Then, start the SA to locate a final solution
with the MGA's result as an initial solution.
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5. Application Results and Discussion can be seen in the figure, the hybrid MGA-SA shows
the superior results both in the run-time and the min-
All the searching modules based upon the afore- imization of the cost function.
mentioned optimization algorithms have been imple-
mented in the C-language, and tested on the PC 8
Pentium 120MHz machine. The population size is 20
both for the SGA and the MGA 7.8
Fig. 5 shows the curves of the runtime and -
best-cost vs. the generation for the SGA and the
MGA As can be seen in the figure, the MGA saved 6.5
about 10% of the run time compared with the SGA - MGA
Also, the MGA gives more converged result than the § 6
SGA does. Furthermore, the MGA seems to be more
stable and less divergent than the SGA owing to the 5.5
usage of the ancestor-pool. s | SA
Fig. 6 shows the curves of the best-cost and the
relative improvements vs. the runtime to compare 45 | MGA—SA
the performance of the tested stochastic approaches.
Here, the ‘costQ’ indicates the reference cost obtain- 4
ed through the divide-and-conquer method [2]. As 0 20 40 60 80 100
Run—Time(sec)
—~ 200
®
2 150 f ‘ 1.2
o SGA
£ 100 |
|I— MGA —
g 50 B 8
@ L
0 - . ‘ - S
0 10 20 30 40 50 2
Generation L
=
®
£
o
6 3
a
% 55 | £
S
5
L SGA
® a5 |
@ MGA 0.6
4 : . ‘ . 0 20 40 60 80 100
0 10 20 ?o 40 50 Run—Time(sec)
Generation

Fig. 6. Best-Cost and the Relative Improvements vs. the
Fig. 5. Run-Time and Best-Cost vs. Generation Run-Time
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Table 2. Results of 10 Runs of the MGA-SA
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Fig. 9. Reactor Power Qutput by the MGA-SA
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Fig. 10. Normalized Control Rod Speed by the MGA-SA

un x1 x2 x3 x4 x5 x6 cost imprmt
1 0.00105 0.00016 1.00E—-06 0.00044 0.00061 0.00967 45093 1.141
2 | 000075 0.08600 1.00E—06  0.00016 0.00873 0.00966 450901 1.141
3 | 0.00059 0.09840 1.00E-06 1.00E—-06 0.00019 0.00965 45091 1141
4 | 000058 000036 100E—06 0.00034 0.00054 0.00967 45088 1.141
5 | 000351 000065 100E—06 0.00001 0.00007 0.00966 45085 1.142
6 | 0.00028 0.00069 1.00E—06  0.00019 0.00026 0.00966 45085 1.142
7 | 0.00624 0.00031 100E-06 100E-06 0.00009 0.00967 4.5084 1.142
8 | 000370 000051 100E—-06 100E—06 0.00012 0.00967 45078 1.142
9 | 0.00808 0.00046 100E-06 100E—-06 0.00629 0.00969 45075 1.142
10 | 0.05040 002820 1.00E—-06 100E—06 0.00053 0.00995 45018 1.143
Avg | 0.00752 0.02157 1.00E-06 0.00011 0.00174 0.00970 45079 1.142
ref | 300E-6 300E—-6 3.00E—6 300E—-6 300E-6 0003 5.1456 1.000

*best result of the ref{2] obtained by the conventional approach
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Figs 7 and 8 show the responses of the OIRS for
the case of conventional design. Fig. 7 describes the
reactor output when the power is step increased by
10% from the initial state of 90% power. The peak
value of the output is sufficiently lower than the
FSAR’s set forth value of 103%. The relative control
rod velocity is shown in Fig. 8. All these results are
obtained throughout numerous simulations. How-
ever, it can not be affirmed that these results are
uniquely the best ones.

On the other hand, Figs 9, 10 and Table 1 illus-
trate the results of the MGA-SA which show the rela-
tive improvements of more than 14% compared with
the above results [2]. Throughout the 10 test-runs,
only the weighting parameter x; and xs showed con-
verged values of le™® and 9.70e”®, respectively.
Other parameters ranged rather widely and showed
no representatively converged values. This can be
explained by the system model in which the tem-

perature feedback effects and the error integration

effects play the major role in the transient.

7. Conclusions

We applied several stochastic searching algorithms
such as the SGA, the MGA, the SA and the hybrid
MGA-SA to the determination of the weighting par-
ameters of the LQR reactor power control system,
and investigated their performances throughout sev-
eral test runs. These stochastic searching methods
usually gave reasonable results for our problems.
Among these methods, however, the hybrid MGA-SA
gave the best performances both in the execution
time and in the solution’s quality.

The MGA which was the modified version of the
SGA showed several advantages of 1) time saving, 2)
never lost of the up-to-best solutions by periodic
re-initialization of population, 3) stable and less diver-
gent search, 4) easy determination of the effective
order of the design parameters, and disadvantage of
pre-maturing compared with the SGA.

Among the weighting parameters, the dominant

dJ. Korean Nuclear Society, Vol. 29, No. 1, February 1997

ones x: and x; whose representative values we obtain-
ed by using the MGASA are 1.e7® and 9.70e7°, re-
spectively. Other parameters range rather widely and
show no representative values. This is because the
state variables corresponding to these parameters are
less dominant ones in our LQR system.

Even though the cost function we dealt with in this
work was somewhat simple and was carrying almost
minimum interactions with the concemed LQR sys-
temn, the proposed approach gave the satisfactory res-
ults. This fact implies that the great advantages of the
proposed approach are the easiness of the im-
plementation and robustness in finding a qualified
result.
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