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Abstract

Quantification of uncertainties in the source term estimations by a large computer code, such as
MELCOR and MAAP, is an essential process of the current Pprobabilistic safety assessment. The
main objective of the present study is to investigate the applicability of a combined procedure of the
response surface method (RSM) based on input determined from a statistical design and the Latin
hypercube sampling (LHS) technique for the uncertainty analysis of Csl release fractions under a

hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant
using MAAP3. 0B code as a benchmark problem. On the basis of the results obtained in the pres-
ent work, the RSM is recommended to be used as a principal tool for an overall uncertainty analy-

sis in source term quantifications, while using the LHS in the calculations of standardized regression

coefficients (SRC) and standardized rank regression coefficients (SRRC) to determine the subset of

the most important input parameters in the final screening step and to check the cumulative distri-

bution functions obtained by RSM. Verification of the response surface model for its sufficient accu-

racy is a prerequisite for the reliability of the final results that can be obtained by the combined pro-

cedure proposed in the present work.

1. Introduction

There are many uncertainties associated with the
application of large computer codes, such as
MELCOR [1] and MAAP (2] developed to represent
accident progression, thermal-hydraulic phenomena,
radionuclide behavior and transport, and environ-
mental consequence analysis for severe reactor acci-
dent. Therefore, currently, the determination of the
uncertainty in source term estimations calculated by
MELCOR and MAAP has become an essential phase
of the probabilistic safety assessment (PSA). The
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main reason for this is because the complex physical
processes governing the phenomena that determine
the radiological releases following severe reactor
accidents are not completely understood yet. In the
source term analysis, the phenomena during a hypo-
thetical severe reactor accident are simulated by a
mechanistic approach using large computer codes.
The sources of uncertainties in mechanistic analyses
arise mainly from imperfect modeling of phenomen-
ology and/or from inaccuracy in physical parameters,
which in a large code such as MAAP and MELCOR,
usually appear in the form of input data [3]. The
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present work is mainly concemed with the treatment
of the latter source of uncertainties associated with
MAAP3. 0B code.

Many different techniques [3-18] have been
proposed for performing uncertainty and sensitivity
analyses on computer models for complex processes.
Cox and Baybutt [5] conducted a survey and com-
parative evaluation of methods which have been de-
veloped for the determination of uncertainties in ac-
cident consequences and probabilities for use in
probabilistic safety assessment (PSA). The methods
included in their study are (1) analytic techniques,
(2) Monte Carlo simulation, (3) response surface
approaches, (4) differential sensitivity techniques, and
(5) evaluation of classical statistical confidence
bounds. According to their conclusion only the re-
sponse surface and differential approaches are
sufficiently general and flexible for use as overall
methods of uncertainty analysis in PSA The other
methods considered, however, are very useful in par-
ticular problems : The Monte Carlo method, in par-
ticular, can be applied when output is not too ex-
pensive to evaluate, and partitioning of output uncer-
fainty is not needed.

More recently, Iman and Helton [9] investigated
the applicability of three widely used techniques to
three computer models having large uncertainties
and varying degrees of complexity in order to high-
light some of the problem areas that must be
addressed in actual applications. They considered the
following three approaches to uncertainty and sensi-
tivity analysis: (1) response surface methodology
(RSM) based on input determined from a fractional
factorial design ; (2) Latin hypercube sampling (LHS)
with and without regression analysis; and (3} differ-
ential analysis. They concluded that the technique
using LHS and regression analysis had the best over-
all performance with respect to the following four cri-
teria: (1) ease of implementation, (2) flexibility, (3)
estimation of the cumulative distribution function of
the output, and (4) adaptability to different methods
of sensitivity analysis.
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Kim et al. [10,11] suggested a statistical procedure
using a RSM for analyzing the thermal margin of
light water reactor core. They concluded that two
level factorial design in RSM is a valuable method for
investigating the sensitivities of input parameters. In
their paper, three different methods are compared
for the thermal margin of light water reactor core.
But generally one should assess the reliability of un-
certainty estimated by RSM for specific application
problems, such as a severe accident analysis.

Kim et al. [10,12] proposed a technique based on
the Fourier amplitude sensitivity test (FAST) and
stepwise regression techniques (SRT) and applied to
the thermal margin analysis of peak clad temperature
for a loss of coolant accident. Kim et al. [10,12]
pointed out that the FAST and SRT meitiod needs a
moderate number of sampling points compared to
the crude Monte Carlo method. This method is ap-
plicable to perform a specific problem that is necess-
ary for detailed information of uncertainties because
it requires relatively large cost when it is used for an
uncertainty analysis of large computer codes.

Park et al. [13] has developed a two-step tail area
sampling technique which is effective for a long-tailed
distribution such as a lognormal distribution. They
recommanded that their method is more effective to
perform a uncertainty analysis given inputs having
long-tailed distributions.

Lee et al. [14] and Park et al. [15] proposed un-
based on a Latin
hypercube sampling technique. The essential feature
of the methods proposed by Lee et al. {14] and Park
et al. [15] is to determine the uncertainty distribution

certainty analysis methods

by performing the goodness-of-fit test for the result
obtained by LHS. Park et al. [15] concluded that
their method is useful to perform a large computer
code uncertainty quantification problem with limited
time and resources. However, the procedure to
identify key contiributors of uncertainty has not been
shown in the abowe papers.

Chun and Ahn [16] developed an alternative ap-
proach of uncertainty quantification using a fuzzy set
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theory as a complement or an alternative to the
methods currently used in the risk assessment of nu-
clear power plants where experts opinion is a major
means for quantifying some event probabilities and
uncertainties. They concluded that the approach
should be improved before it can easily be used for
PSA purposes.

In the previous work [17,18], two methods of un-
certainty quantification, ie., the response surface
method (RSM) and the Latin hypercube sampling
{LHS) method have been assessed for applications
to the source term uncertainty analysis of the
Younggwang nuclear power plant using the MAAP
3.0B code. The results show that the RSM is difficult
to generate an accurate response surface whereas
the LHS method is difficult to treat the key
contributors of uncertainty when both methods are
used alone independently. In the source term analy-
sis, the RSM has relative advantages in the analysis
of importance and sensitivity : An important qualitat-
ive information about the relation between the inputs
and outputs can be obtained. However, this advan-
tage of the RSM does not outweigh the loss in accu-
racy when the approximate model used is not ad-
equate. The LHS method is more readily executable
without any prior procedure to obtain an approxi-
mate model to replace the large computer code.

The main feature of the present combined pro-
cedure for uncertainty analysis in source term
quantifications is to use the Latin hypercube sam-
pling (LHS) method in the calculation of standardi-
zed regression coefficients (SRC) and standardized
rank regression coefficients (SRRC) to determine the
subset of the most important input parameters in the
final screening step. Another key idea is the sugges-
tion to use the RSM as a principal tool for overall
uncertainty analysis in source term quantification,
while using the LHS method in checking the empiri-
cal distribution functions obtained by RSM. The main
purpose of the present work is to present a
combined procedure using RSM and LHS for uncer-
tainty analysis of Csl release fractions under a hypo-

thetical severe accident sequence of station blackout
at Younggwang nuclear power plant using MAAP3.
0B code as a benchmark problem for general
applications in the source term uncertainty analyses.

2. Outlines of Two Uncertainty Analysis
Methods Used for Computations
and Checking

In the present work, the following often used two
approaches to uncertainty analysis are selected to
use together for actual computations and testing the
result :

(1) Response surface method (RSM) based on input
determined from an experimental design (more
specifically, a foldover based on the Plackett-
Burman design, augmented by center and star
points).

(2) Latin hypercube sampling (Modified Monte
Carlo).

The RSM is used here as a principal tool for over-
all uncertainty analysis in source term quantifications,
whereas LHS method is used in the calculation of
SRC and SRRC in the final screening step and
testing of the response surface model obtained by
RSM in the final stage. Since this study is not
intended to be a detailed investigation of RSM and
LHS, only key features of these methods are

summarized here for convenience in discussions.

2.1. Response Surface Method of Uncertainty
Analysis

Response surface methods of uncertainty analysis
were developed to overcome the disadvantages of
the Monte Carlo approach [5].

In the present work, the response surface equation
obtained in a least-squares fitting procedure is a sec-
ond-order polynomial in the input parameters [6-12]:

Y=g+ ﬁ:a,-X,*F 2 _ﬁ a; X; X+ 2%)(3
=1 7=1 1=7+1 =1
(1)
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where Y is the estimate of the response from the re-
sponse surface equation, and ao, g, a;, and g, are
numerical coefficients estimated by least-squares
fitting. A response surface replacement for a
computer model is based on using an exper-
imental design to select a set of specific values
and pairings of the input variables Xi, X, -+, X
that are used in making N runs of the computer
model. The model output Yi{i=1, 2,---,N) and in-
put Xi, Xz, ---, X are used to estimate the numerical
coefficients of Eq. (1). The estimated model is known
as a fitted response surface, and it is this response
surface that is used as a replacement for the com-
puter model [9)]. All inferences with respect to uncer-
tainty analysis for the computer model are then de-
rived from this fitted model.

2.2. Latin Hypercube Sampling Method of Uncer-
tainty Analysis

Latin hypercube sampling (LHS), a type of strati-
fied Monte Carlo sampling, has recently been used in
uncertainty and sensitivity analyses of various com-
puter models [4,89,14,15,17,18]. Iman and Helton
[9] have shown that LHS technique offers an effec-
tive alternative to the response surface replacement
approach.

Because of the random pairing of intervals in the
mixing process, there exists the possibility of inducing
undesired pairwise correlations among some of the
variables in a Latin hypercube sample. This is more
likely to occur if sample size n is small [9]. The choice
of the sample size n will be dominated by the cost of
making a single computer run and the number of in-
put parameters k. However, it is preferable that
sample size n be greater than or equal to (4/3) [9].
A comprehensive list of references on the use of
LHS in uncertainty and sensitivity analysis can be
found in Ref. 9.
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3. A Combined Procedure of RSM and LHS
for Uncertainty Analyses of Csl Release
Fraction Under a Severe Accident Se-
quence Using MAAP3.0B

The two uncertainty analysis methods described in
the above are now applied to the uncertainty analysis
associated with estimations of Csl release fraction to
the environment under a hypothetical severe acci-
dent sequence of a station blackout (SBO) of
Younggwang 3&4 nuclear power plant [19]. The
SBO sequence is an accident to cause core damage
due to the loss of all electric powers in the nuclear
power plant. The Younggwang nuclear power
reactors are 2,815 MWt, 2-loop type PWRs and each
reactor is housed in a large dry containment.

Only the CsI group release fraction at 10 hours
after the occurrence of containment failure under a
given SBO accident sequence has been estimated
here for source term uncertainty analyses using
MAAP3.0B code, although this code can calculate
the behavior of 12 source term groups.

The MAAP (Modular Accident Analysis Program)
version 3.0B used in this work simulates the re-
sponse of light water reactor (LWR) power plants
during severe accident sequences. This code quanti-
tatively predicts the evolution of a severe accident
starting from full power conditions given a set of sys-
tem faults and initiating events through events such
as core melt, reactor vessel failure, and containment
failure. A detailed information on MAAP3.0B is given
in Ref. 2. An alternative code whose scope is similar
to MAAP is MELCOR [1], but less experience has
been - accumulated with this code than with MAAP.
This is especially true for PWRs.

3.1. Screening of Effective Input Parameters and
Selection of the
Parameters

Values of the Input

The first step (in the second stage) of the present
uncertainty analysis is the screening of the input
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variables, leaving only those most affecting the
calculated consequences. The general problem
addressed by screening is one that is basic to most
large, complex deterministic models and computer
codes that solve large system of equations requiring

_ a vast number of input parameters whose quantitat-
ive importance is not known. Screening sensitivity
analysis is designed to determine the relative signifi-
cance of each input parameters for which an exten-
sive uncertainty analysis is needed [4].

In the present analysis, three techniques, (1) sub-
jective method, (2) one-at-a-time design, and (3)
standardized (SRC) and
standardized rank regression coefficient (SRRC), are

regression  coefficient
used in series as described in the following.

(1) Screening by Subjective Method :

MAAP3.0B code has a total of 77 phenomeno-

logical model parameters. MAAP’s treatment of un-
certain severe accident phenomena is controlled by

these model parameters. Model parameters are used
both as inputs to a given physical model and to sel-
ect between alternative descriptions of a phenom-
enon. A best-estimate value and range for these
parameters are given in the code documentation
[20].

As a first cut at the 77 input model parameters of
MAAP3.0B code, 39 model parameters are selected
by subjective method based on selection criteria given
in Ref. 20. These 39 parameters are used in the fol-
lowing step of sensitivity analysis to assess the relative
significance of each input model parameters.

{2} Screening by One-At-A-Time Design :

The uncertainty of the input parameters can be
quantified by treating the parameters as random
variables with appropriate density functions (pdfs) or
cumulative distribution functions (cdfs). The uncer-
tainty ranges of each of the 39 parameters used in
the present screening process are obtained from the
full ranges of each input parameter given in MAAP
3.0B code manual [2]. A uniform distribution is
assumed to be valid for most parameters, whereas a
log-uniform distribution is assumed to be valid for

those parameters whose uncertainty ranges exceed
102 Based on the magnitude of the sensitivity coef-
ficient of each parameter, 22 parameters are selected
to be assessed further in the following step (Table 1).
The intermediate results along with all the necessary
data used for this step can be found in Ref. 21.

(3) Screening by the Coefficients of SRC and

SRRC :

In this final screening step to determine the subset
of the most important input parameters, SRC and
SRRC are first calculated for 22 input parameters
using the Latin hypercube sampling (LHS) with a
minimum sample size of 23. The 22 input
parameters are then ranked according to the
magnitudes of both SRC and SRRC of each input
parameters. Based on the rank of SRC and SRRC of
each parameter and the results obtained in the pre-
vious steps of screening, only 12 most important
parameters are finally selected out of 22 parameters
examined in this step (Table 1). Range and distri-
bution functions assumed, along with a description of
the 12 most important parameters, are given in
Table 2. These variables are assumed to behave in-

dependently of one another.

3.2. Uncertainty Analyses by RSM and LHS
3.2.1. Uncertainty Analysis by RSM

The response surface method of uncertainty analy-
sis consists of (1) screening to determine the subset
of important parameters, (2) statistical design for an
efficient empirical exploration of the response sur-
face, (3) response surface modeling to obtain a proxy
to the original code (MAAP3.0B in the present case),
and (4) estimation of the output distribution function.
Screening of the input parameters, however, has
already been described in the above, because this
step is common to both methods of RSM and LHS.
The remaining 3 steps are described in the following.

(1) Statistical Design Selected for This Work :
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With the RSM uncertainty analysis, the pertur-
bations of the input parameters are carried out ac-
cording to an experimental design that enables an ef-
ficient empirical exploration of the response surface.
The choice of the experimental design depends on
the number of inputs to be varied, but the basic ap-
proach is to implement a composite design in a
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sequential manner.

The statistical design selected for this work is a
foldover based on the Plackett-Burman design,
augmented by center and star points. This combi-
nation of design accounts for the linear and quad-
ratic effects of the inputs as well as those of two-fac-
tor interactions between inputs, while requiring a

Table 1. Screening by One-at-a-time Design and by Coeflicients of SRC and SRRC

Screening Screening Model
by by SRC Parameters Min." Max? PDF? ISRC[* |SRRC|?
One-at-atime and SRCC

N N CSHAPE 1 15  Uniform 5.808E-03(22)" 8.696E-02(14)
N x8 SCALH 05 10  Uniform 4.056E-01(2) 2.687E-01(5)
N N FRCOEF 0.001 01 Logunform 3.381E-01(4) 2.104E-01(8)
N v TDSTX 0 05  Uniform 3.009E02(20)  1.997E-01(9)
vV TCNMP 1200 1950  Uniform 9.014E-02(17)  7.708E-02(15)
N v FAOX 1 2 Uniform 2474E-01(11)  1482E-01(13)
N FCSIVP —100 100  Uniform 3599E-02(19)  1.581E-01(11)
N N ACFPR 0.01 10 Logunform 3.168E-01(5) 3.360E-02(20)
N N TEU 2400 3000  Uniform 2.170E-01(12)  1.719E-01(10}
N N LHEU 1 1E06 Logunform 1.571E-01(13) 1.383E-02(22)
N N TTENTR 01 10  Uniform 3.045E-01(7) 5.276E01(2)
N TTRX 30 1000  Uniform 4331E-02(18)  2.628E-01(6)
NG x? PCF 577000 15E06 Normal 6.415E-01(1) 7.559E-01(1)
N N HTCMCR 500 5000  Uniform 3.050E-01(6) 1.512E01(12)
N Ni FFPREL 001 1 Logunform 2.848E-01(8) 3.112E-01(4)
N v XRSEED 1E07 1E-06  Uniform 2552E01(10)  3.142E01(3)
N FENTR 02 100 Logunform 1004E-02(21)  5534E-02(17)
N FPRAT 1 2 Flag 2.662E-01(9) 5.249E-02(18)
N, GSHAPE 1 10 Uniform 1.362E-01(14)  1.680E-02(21)
N, FCRBLK 0 1 Fag 1.029E-01(15)  3.926E-02(19)
N FCHF 0.12 03  Uniform 9513E-02(16)  7.312E-02(16)

1) Min. : minimum value.

2) Max. : maximum value.

3) PDF : probability density function.

4) |SRC| : absolute value of SRC.

5) ISRRC]| : absolute value of SRRC.

6) «/:selected parameter by the screening.

7) () :ranking of parameter.

8} unselected parameter bacause some values of SCALH can drive anunstable code run.

9) unselected parameter bacause some values of PCF can result in a long time to containment failure (>48hr), which is

unreasonable to calculate the Csl release fraction at 10 hours after the occurrence of containment failure.
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Table 2. Minimum and Maximum Values and Distribution Functions Assumed for 12 Most Important Model

Parameters
Model Minimum Maximum Dismb\'m'on Random
Parameter Description of the Parameter Values calues Functions Variable
Assumed
FRCOEF Friction coefficient used to 0.001 0.1 Loguniform  X: =logio x1
compute heat transfer
coefficient in vessel failure
ACFPR Containment failure area {m?) 0.005 100 Loguniform Xz =logio x
FAOX Clad surface multiplier 10 20 Uniform Xs=x3
TDSTX Time delay between debris contact with floor 0.0 05 Uniform Xe=x4
and initiation of steam explosion (sec)
FFPREL Multiplier for in-vessel fission product release 0.01 1.0 Loguniform X5 =logio x
rates
HTCMCR  Heat transfer coefficient between corium pool 500.0 5000 Uniform Xs=x5
and frozen crust (W/m-K)
FCMDCH  Debris fragmentation fraction 0.0 1.0 Uniform X =x
TTENTR Time constant for debris transport (sec) 01 100 Loguniform X =logio x»
CSHAPE  Shape factor for aerosol settling velocity 10 150 Uniform Xo=xv
LHEU Latent heat of U-Zr-O eutectic (J} 10 10x10°  Loguniform  Xio=logio xi0
XRSEED  Seed radius of hygroscopic aerosol (m) 1.0x1077 1.0x10°¢ Uniform X =x1
TEU Eutectic melting temperature (K) 2400.0 3000.0 Uniform Xiz=xi2

small number of computer runs [3]. As a special case
of the resolution Il design, the Plackett-Burman de-
sign does not meet the requirement of Eq. (1), for
the main effects, although independent of each
other, are confounded with two-factor interaction ef-
fects, and the latter with each other. To eliminate
confounding between the main effects and the
two-factor interaction effects, a foldover design can
be constructed by adding to the Plackett-Burman de-
sign, a duplicated design with reversed signs [3].

The foldover design based on the Plackett-Burman
design doubles the number of runs in the resolution
Il design but allows one more factor to be studied
by association of that factor with the identity-column
in the resolution Il design. This design requires 24
observations (N=24) to study 12 parameters and
accounts for the linear effects and two-input interac-
tion effects. To account for the quadratic effects, one
center point and 24 star points are added to the

foldover design.
In the present analysis, all input variables are
normalized as follows :

(xq“#,‘)
a;= _—E;—

(2)

where i=1, 2, -, N (number of code runs), and
j=1, 2, -, k (number of input parameters). In Eq.
(2), ay=ith dimensionless value of j'th input, x;="th
value of j'th perturbed input, s =mean value of j'th
input, and ¢, =standard deviation of uncertainty dis-
tribution of j’th input. Then a; is equal to + 1,
implying a variation of =+ ¢; about the nominal value
#i.

In summary, the statistical design selected for this
work requires a total of 49 observations for 12 input
parameters as shown in Table 3. This design
accounts for the linear effects, the quadratic effects
of each input parameter, and the effects of two-input

interactions. The linear and quadratic effects are in-
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Table 3. Plackett-Burman Design for N=12, k=11 Obtained by Foldover Augmented by Center and Star Points
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dependent of each other and from two-factor
interactions, but the latter are confounded with each
other. Higher order interactions between three or
more input factors are not accounted for, but nor-
mally they are negligible [3].

(2) Response Surface Modeling :

The statistical design described above, when used
in connection with a computer code, generates a set
of calculated values (observations) for the conse-
quence of interest. From these observations, a linear
regression technique constructs the multivariable
function Y of the calculated consequence. That is,
using the statistical design described above, 49
responses (Csl release fractions at 10 hours after the
occurrence of containment failure) have been
calculated by MAAP3.0B. These 49 responses are
then used in a least-squares fitting procedure to esti-
mate the numerical coefficients ao, @, a5, and a; in
Eq. (1) in the
least-squares sense to minimize the standard error of

These coefficients are chosen

the fit. The resulting multivariate function Yeu repres-
enting the log Csl release fraction (transformed into
logarithmic values) at 10 hours after the occurrence
of containment failure under a station blackout acci-

dent sequence is as follows :

CsI Release Fraction (Y ) Predicted by
Response Surface Model [Eq. (3)]

(=]

o
=3
=
-

|

Lo

1E-3 Lo H L L
1E-3 0.01 0.1 1

Csl Release Fractions Calculated by MAAP3.0B

Fig. 1. A Direct Comparison of Cs/ Release Fractions
Between Those Calculated by Response Surface
Model [Eq. (3)] and Those by MAAP3.0B.

are also summarized in Table 4.
(3) Estimation of the Qutput Distribution Function :
Knowing that Eq. (3) is a satisfactory response sur-
face to approximate the output, it can be used to ap-
proximate the probability density function (pdf) of
output Y. There are two major methods of estimat-

ing the pdf of Y using the response surface model

Yoo = logy you

= — 1.01226 + 0.02434X,  + 0.24005X, — 0.02153X; + 0.05670 X
+ 0.04138 X — 0.0147X; - 0.09064X;  + 0.03068.X, + 0.04505 X
— 0.07454 X, + 0.08451 X,
— 0.11116X,X; — 0.09440 XX, — 0.04404X3X; — 0.06014 X,X,
— 0.05155X,X; — 0.07112X,x, + 0.02895X5X; — 0.06200X:X,,
+ 0.16722X,,X
- 0.11357X3 — 0.06022X7  — 0.05629X%  —. 0.11337X%
— 0.04698 X2 - 0.19005X%  — 0.03811X%  — 0.05172X%, . (3)

Now it is necessary to verify the ability of Eq. (3)
to reproduce the calculations of MAAP3.0B with suf-
ficient accuracy. A direct comparison between the
predictions of Eq. (3) and MAAP3.0B calculations
shows that the agreement is very close as can be
seen in Fig. 1. In addition, as shown in Table 4 the
R? statistic is 0.9956 which indicates that Eq. (3) is

an excellent fit. The statistics of stepwise regression

[6,7]: (1) the moment matching technique and (2)
the crude Monte Carlo technique. In the present
analysis, the response surface model obtained in the
above, Eq. (3), is used as a proxy for the original
code and 1000 crude Monte Carlo simulations have
been performed to obtain an approximate density
function (df) of the output. The 12 input parameters

used in this crude Monte Carlo simulation with Eq.
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Table 4. Statistics of Stepwise Regression

dJ. Korean Nuclear Society, Vol. 28, No. 6, December 1996

Analysis of Variance

Degree of Freedom

Sum of Squares

Mean Square

Regression 32 3.47902088 0.108719%4
Exror 16 0.01535008 0.00095938
Total 48 3.49437097
F=113.32 Prob.)F 0.0001 R?=0.9956072
Parameters in the Regression Equation
Parameters Standard Typell .

Parameters Estimate Ermror Sum of Squares F Prob)F
Intercept —1.0122607 0.0274712 1.3026303 1357.78 0.0001
X1 0.0243356 0.0069245 0.0118494 12.35 0.0029
Xz 0.2400493 0.0071721 1.0747321 1120.24 0.0001
X3 —0.0215325 0.0071153 0.0087860 9.16 0.008
Xa 0.0566947 0.0072014 0.0594618 6198 0.0001
Xs 0.0413823 0.0072265 0.0314603 32.79 0.0001
X7 -0.0154732 0.0067171 0.0050908 531 0.035
Xs —0.0906409 0.0070526 0.1584690 165.18 0.0001
Xs 0.0306790 0.0067043 0.0200893 2094 0.0003
X0 0.0450541 0.0067369 0.0429079 4472 0.0001
Xu —0.0745438 0.0066666 0.1199502 125.03 0.0001
X1z 0.0845123 0.0069827 0.1405335 146.48 0.0001
Xf —0.1135715 0.0143257 0.0602972 62.85 0.0001
XiXs 0.1095713 0.0196061 0.0299640 3123 0.0001
XiX1z —0.0595487 0.0215782 0.0073064 7.62 0.014
% —0.0602181 0.0185529 0.0101073 1054 0.0051
X2X3 0.0746456 0.0178673 0.0167448 17.45 0.0007
X2Xs 0.1192513 0.0178630 0.0427092 4452 0.0001
X2X10 —0.1111593 0.0115204 0.0893198 93.10 0.0001
XsX4 —0.0943973 0.0205297 0.0202835 21.14 0.0003
XsXs —0.0440445 0.0156598 0.0075892 791 0.0125
X3Xu 0.0601409 0.0196037 0.0090292 941 0.0074
XaXw0 —0.0515546 0.0137888 0.0134114 13.98 0.0018
XaX12 —0.0711245 0.0234898 0.0087956 9.17 0.008
3 -0.0562863 0.0144372 0.0145824 15.20 0.0013
XsXo 0.0289498 0.0129467 0.0047968 5.00 0.0399
XsX12 —0.0620049 0.0152972 0.0157622 1643 0.0009
X§ —0.1133706 0.0144629 0.0589499 6145 0.0001
X5 —0.0469802 0.0111082 0.0171605 17.89 0.0006
Xh —0.1900478 0.0202112 0.0848268 8842 0.0001
X# -0.0381095 0.0109806 0.0115559 12.05 0.0032
XuXiz 0.1672172 0.0161561 0.1027731 107.12 0.0001
Xt —0.0517249 0.0111324 0.0207116 2159 0.0003
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Table 5. Major Statistical Parameters of RSM and LHS(Ycs =logio yes)
Mean Median 5% 95% Standard
Deviation
RSM -1.6496 ~15348 ~25387 ~0.9642 0.4907
LHS ~1.6031 ~14814 —22832 ~09298 05347

10 , — f)/
s
o Eq. (3) = /f’{/—LHSA

o »;ﬁ

00 ) B G Lo NN
1E-4 1E-3 0.01 0.1 1
Csl Release Fraction at 10 hours after

Estimated Distribution Function

the Occurrence of Containment Failure

Fig. 2. A Comparison of Cumulative Distribution Func-
tion for Csl Release Fractions between That
Obtained by RSM and That by LHS Using
Equal Amount of Information.

(3) are shown in Table 2, whereas the major statisti-
cal parameters of Csl release fraction are given in
Table 5. The cumulative distribution obtained by the
1000 crude Monte Carlo simulations, on the other
hand, is shown in Fig. 2.

3.2.2. Uncertainty Analysis by LHS

Now, it is necessary to prove the validity of the
empirical distribution function of Csl release fraction
obtained by RSM (i.e, Eq. (3)). The best method is
to compare the cumulative distribution function (cdf)
generated by RSM (shown in Fig. 2) directly with
actual empirical data or exact solutions when they

are available. In the absence of this information at

present, however, the next choice is to estimate the
cdf by some other simple and reliable method and
compare with the results of RSM. For this purpose,
LHS seems to be the best choice based on the four
criteria described in the introduction.

Therefore, an additional uncertainty analysis has
been performed by LHS method to check the results
obtained by RSM. The present analysis is performed
with a Latin hypercube sampling of size 49 using the
12 input parameters given in Table 2. This sample
size is identical to the number of observations used
to fit the response surface model and is selected to
make a fair comparison between the two methods of
uncertainty analysis. The main concern here is that
the cumulative distribution obtained and major stat-
istical parameters estimated from each technique
should be based on equal amount of information.

To estimate the MAAP3.0B predictions by LHS
method, a computer program that can generate the
Latin hypercube sample has been developed. The re-
stricted pairing procedure of Iman and Conover (8]
with a slight modification to simplify the program was
built into the computer program to preclude spurious
correlations within the sample. The correlation matrix
for the LHS input parameters had a varance in-
flation factor {(MF} of 1.32, indicating negligible
pairwise correlations within the sample.

In uncertainty analysis associated with LHS, it is
desired to estimate the distribution function and the
variance for the particular output variable(s) Y under
consideration. Since LHS is based on a probabilistic
input selection technique, an estimate of the cdf is
obtained directly when an output variable is graphed
as an empirical cumulative frequency distribution [9].
In Fig. 2, the empirical distribution for the Csl release
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fraction obtained by LHS method is compared with
the results obtained by RSM technique. In addition,
major statistical parameters estimated by LHS and
RSM are shown in Table 5.

4. Discussion of Results

To verify the ability of the response surface model
obtained (Eq. (3)) to reproduce the calculations of
MAAP3.0B with sufficient accuracy, Csl release
fractions predicted by Eq. (3) are compared directly
with those values calculated by MAAP3.0B in Fig. 1.
The results in Fig. 1, as well as the R statistic given
in Table 4, show that these two results are in good
agreement.

As a method of checking the result obtained from
RSM by a different technique, the cumulative distri-
bution functions of the Csl release fractions to the
environment evaluated by RSM and LHS are
compared in Fig. 2. This figure shows that the agree-
ment between the two cdfs is very close except for
the lower percentile regions. Also, the result of a stat-
istical test of the hypothesis that two distributions are
the same by Kolmogorov-Smirov two-sample test
shows that there is no evidence of a difference be-
tween the two distributions at 5% significance level.

To further examine the accuracy of the response
surface model (Eq. (3)), the MAAP3.0B code has
been run 49 times using the Latin hypercube sam-
pling with 12 input parameters shown in Table 2.
These 49 data points are then compared with
predictions made by Eq. (3) using the same input
values used in the LHS as shown in Fig. 3. Those
points that lie on the diagonal in Fig. 3 indicate that
the Csl release fractions predicted by the response
surface model (Eq. (3)) perfectly agrees with the
values obtained by MAAP3.0B using LHS. Figure 3
shows that about 20% of the data points predicted
by Eq. (3) is quite different from the values obtained
by MAAP3.0B with LHS even though the two cdfs
obtained by two methods agree very closely as shown
in Fig. 2.
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Fig. 3. Comparison between the CsI Release Fractions
Data Obtained by MAAP3.0B Using LHS and
Those by Response Surface Eq.(3)

From the results shown in Fig. 1 and Fig. 2, it can
be inferred that the LHS technique does not repro-
duce the calculations of MAAP3.0B with as much ac-
curacy as the RSM which is represented by Eq. (3) in
the present case.

It may be noted here that the more accurate re-
sponse surface equation could be constructed if one
increases both the number of code runs and the
number of input parameters. For this purpose, how-
ever, a considerable amount of time and additional
effort might be needed. To obtain just one data
point of the Csl release fraction (shown in Fig. 3)
with MAAP3.0B, for example, the CPU time of the
SUN SPARC 10 workstation used in the present
work varied from 50 to 150 minutes depending on
the values of input parameters.

5. Summary and Conclusions

An outline of the present combined procedure of
RSM and LHS for uncertainty analyses of source
term quantifications with MAAP3.0B has been
summarized in Table 6. It should be noted here that
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Table 6. Summary of Combined Procedure of RSM and LHS for Uncertainty Analyses of Source Term
Quantifications with MAAP3.0B

Three Stages Subject of Major Steps Items to Be Treated

1 —Collection of Data and Research to Obtain — Containment Performance Data
the Important Characteristics of the Given —Important Design Characteristics

s
1 ant:ie Nuclear Power Plant for Severe Accident —Plant Response Under Severe Accident
ary of Analysis Conditions
Given
Conditions for 2 - —MAAP3.0B Code Characteristics —Siructure of the Code
Analysis” —Review and Analysis of Model Parameters —Important Physical Parameters
—Plant Specific Parameters — Important Input Parameters
3 —Accident Scenario Selection —Selection of Scenarios
— Analysis of Scenarios
4 —Screening of Input Parameters (Selection of —3-Step Screening: (1) Subjective,
Effective Input Parameters) (2) One-at-a-time, (3) SRC & SRRC
—Estimation of Input Uncertainties (Ranges of —Summary of Important Phenomena and
Values of Input Parameters to Be Used in Important Models
the Analysis) —Uncertainty Estimations of the Screened In-
put Parameters (e.g., Probability Density
Functions and Ranges)
5 —Propagation of Uncertainty —RSM : (1) Experimental Design, (2) Response
Surface Modeling by Least-square Fitting,
(3) Estimation of Output Distribution Func-
2™ Stage fion
“Uncertainty —Checking Cdf Obtained by RSM with LHS :
Analysis” (1) Sampling, (2) Estimation of Output Distri-
bution Function
—Statistical Test (for the Results of RSM and
LHS)
— Estimation of Output Uncertainty (e.g., CDF
and/or PDF ; their Ranges)
6 —Assessment of the Relationships Between —Rank of the Important Input Parameters
the Input Parameters and Response Surface —Information on the Relative Contribution of
Model Output by Regression Techniques Input Uncertainties to the Output
Uncertainties
7 —Uncertainty Estimation of Key Output —Containment Failure Time, Amount of Each
3™ Stage Parameters Source Term Group Released to the En-
“Interpretation vironment, etc.
of Uncertainty 8 —Results of Uncertainty Analysis for Physical —Results of Quantitative Analysis
Analysis and Phenomenological Models
Results” 9 —Interpretations of Overall Uncertainty Analy-  —Integration of All the Scenarios

sis Results —Explanations and Conclusions of Major
Findings
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the present work is mainly concerned with an overall
procedure for an application to the second stage
shown in Table 6.

On the basis of the results presented in this paper,
a combined procedure of RSM based on input deter-
mined from a statistical design and LHS is
recommended to be used as a principal tool for an
uncertainty source term
quantifications, while using the LHS in the
calculations of SRC and SRRC to determine the
subset of the most important input parameters in the

overall analysis  in

final screening step and to check the cdfs obtained
by RSM. The accuracy of the response surface
equation is a prerequisite for the reliability of the un-
certainty analysis results obtained by the present
combined RSM and LHS. Therefore, verification of
the response surface model for its sufficient accuracy
by either a direct comparison (as shown in Fig. 1) or
by comparing with the results obtained by LHS
method (as shown in Fig. 2} should be performed
prior to the generation of cumulative distribution
functions.
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Acronyms

cdf
Csl Cesium lodide
df Density Function

Cumulative Distribution Function

LHS Latin Hypercube Sampling

pdf Probability Density Function

PSA  Probabilistic Safety Assessment

PWR  Pressurized Water Reactor

RSM  Response Surface Method

SBO  Station Blackout

SRC  Standardized Regression Coefficients
SRRC Standardized Rank Regression Coefficients
VIF Variance Inflation Factor
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Nomenclature

Yes

Yeo

L}

Regression Coefficients (Intercept)
Regression Coefficients (1st Order Terms)
Regression.Coefficients (Interactive Terms)
Regression Coefficients (2nd Crder Terms)
Number of Input Parameters

Sample of Size

Number of Code Runs

Multiple Correlation Coefficient Squared
i'th Value of j'th Perturbed Input

Input Parameters

OQutput Parameter

Prediction of Response Surface

Csl Release Fraction

Log Transformed CsI Release Fraction

i’th Dimensionless Value of j’th Input Value
Mean Value of j'th Input

Standard Deviation of Uncertainty Distribution
of j'th Input
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