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Abstract

A two-step approach has been used to obtain a new criterion for the onset of slug formation : (1)

In the first step, a more general expression than the existing models for the onset of slug flow cri-

terion has been derived from the analysis of singular points and neutral stability conditions of the

transient one-dimensional two-phase flow equations of two-fluid model. (2) In the second step,

introducing simplifications and incorporating a parameter into the general expression obtained in

the first step to satisfy a number of physical conditions a priori specified, a new simple criterion for

the onset of slug flow has been derived. Comparisons of the present model with existing models

and experimental data show that the present model agrees very closely with Taitel & Dukler’s mod-

el and experimental data in horizontal pipes. In an inclined pipe (0 =50°), however, the difference

between the predictions of the present model and those of existing models is appreciably large and

the present model gives the best agreement with Ohnuki et al.’s data.

1. Introduction

Because of its importance in thermal-hydraulic des-

igns of two-phase flow systems, the phenomenon of
the transition from a stratified waw to a slug flow
has been studied by many investigators[19] in the
past 25 vyears since Kordyban and Ranov([1] first
analyzed it for water and air between horizontal par-
allel plates.

If the gas phase welocity is sufficiently high, the
pressure component in phase with the wave becomes
so large that the resulting suction overcomes the
downward forces on the liquid, and the wave motion
changes from periodic to essentially exponential. This
is known, in general, as a Kelvin-Helmholtz instability.
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In the case of the two-phase flow in a closed con-
duit, in particular, this effect is significantly enhanced
by the proximity of the upper wall. Kordyban and
Ranov{1] proposed that the formation of slugs in
the two-phase flow is due to a modified Kelvin-Hel-
mholtz instability of the waves. A review of the litera-
ture of two-phase flow applications shows that the
most widely used correlation to predict the initiation
of the slug flow and flooding is the correction to the
Kelvin-Helmholtz inviscid theory proposed by Taitel
and Dukler[3].

The main purpose of this paper is to present the
two-step approach used to extend the method of
characteristics and stability analyses of one-dimension:
al two-phase flow equations presented by Lyczkowski



300

et al. {10] and Bilicki et al.[11] to the derivation of a
newcriterion for the onset of slug formation. In the
first step, a more general form for the onset of slug
flow criterion is derived based on the bifurcation the-
ory (nonlinear analysis) : more specifically, analyses of
singular points and neutral stability conditions of the
transient one-dimensional two-phase flow equations
of the two-fluid model in a manner similar to the
procedure used in the derivation of a flooding corre-
lation by Lee and No[12]. In the second step, the fi-
nal form of a new criterion for the onset of slug flow
has been obtained by simplification of the general ex-
pression derived in the first step and incorporation of
a parameter to satisfy a number of physical condi-
tions a priori specified.

2. Two-Phase Flow Equations

Consider a one-dimensional transient stratified
two-phase flow shown in Fig. 1. The two phases are
assumed to be weakly coupled co-current gas-liquid
in a pipe of diameter D, (or a channel of height H
and infinite width) with an inclination 8 to the hori-
zontal.

The one-dimensional, two-fluid transient model [7,
13] is formulated by considering each phase sepa-
rately in terms of two sets of conservation equations
governing the balance of mass and momentum of
each phase as follows :

®)

Fig. 1. Physical Model for the Onset of Slug Flow
Analysis
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Here a, p, u, P, 8 and 1, are the volume fraction, the
density, the average velocity of the two fluids, the
pressure, the inclination to the horizontal, and the
interfacial shear stress, respectively. I« and M are
the rate of mass generation of phase k at the inter-
face and the rate of momentum generation of phase k
at the interface (which results from surface tension,
and depends on the geometric state of the interface).
The subscripts f and g denote liquid-phase and
gas-phase, respectively, and i stands for the value at
the interface. In Egs.(1) and (2), the spatial coordi-
nate is denoted by z and the time is denoted by t.
From the interfacial momentum and mass conser-
vation, My + M,=0 and I’y + T, =0.

In the present derivation of the onset of slugging
criterion based on characteristics and stability analy-
ses of the transient one-dimensional two-fluid formu-
lations of two-phase flow, the energy conservation
equations are not included since the effect of ther-
mal energy transfer on the rapid flow regime tran-
sition phenomenon such as the onset of slugging can
be considered to be a secondary factor in compari-
son with the effect of mass and momentum transfer
on the flow regime transition.

The average pressures P; and P, differ from the
corresponding values at the common interface Py
and P, since the pressure of each phase varies due
to gravity. Also, Py and P; may be different due to
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surface tension effects. The average pressure of each
phase, in terms of its pressure level at the liquid-gas
interface, y=H, is given by [7]

a d a,
a—Z(P/oc,)za—z_[0 [P, +p,gcosB(H, - y)lda,

J JIH,
=5“Z‘(R/“/)+Prg°°59a/ Z (3a)
3 3 J0H
=a, B_Z(P'/)+ P, a—z(a/)+p/gcosea, =
and
2 (pa,) =L ["(P, -p,gcos8(y~ H, M
aZ [t 81 o e s 4 f
0 dH,
=a_Z(P,_‘a‘)+p,gc0560£, 32 (3b)

oH
:a,;‘;(P.,)+ P, aiz(a,)+p,gcoseon'a—zl

The spatial derivative of the interfacial pressure dif-
ference of the two phases {ie, AP =P,—Py) is a
function of surface tension and curvature of the inter-
face {surface} and AP, can be represented in terms of
the principal curvatures of the interface R; and R: as
follows :

1 1
AF, = G(F + ?) {3c)

] 2

The curvature of the liquid-gas interface, on the
other hand, is related to woid fraction. Therefore,
spatial derivative of the interfacial pressure force
(0AP./ 02) can be expressed as

aAP AP du

34" 3w 3t @
and

d d )

—P =—PFP —-—Af’i 5

dz ' 9z " 9z (5)

The spatial derivative of the interfacial pressure dif-
ference in Eq.(5) is given by

9 ] 11
ZAR = E[C(—E‘FE)] (6)
For a separated flow in a tube it can be shown
that [13]

Feoe (G

N
GEa/alApgsinO-—‘C,—l{—a‘-Pt

aal Si a(1/ aal Sl
v v e

where S; is the wetted perimeter of the interface. In
the present study, the phasic Reynold stresses (i.e.,
viscous stress) for the separated flow can be modeled

as follows :
o) S, )
2z A

Referring to an inclined stratified gas-liquid flow in
a pipe of diameter D shown in Fig. 1, 0H;/ 0z terms
in Eq.(3) can be expressed as (Appendix I) :

8H,= D oo,

dz _4siny-§

9)

Noting that I';=—1Iy=T, the mass conservation
equations for liquid and gas, Eqgs.{(1a) and (1b), can
be rewritten as

d
%(a/)+'a_z(a/ u/)'_'_r /P/ (10)

d 9
o L =T
5 (@) 5, u)=T /p, (1)

Substituting the above relations, Egs.(3a)~(9), into
Egs.(2a} and (2b), and multiplying Egs.(2a) and (2b)
by and o, and o, respectively, and subtracting the lat-
ter from the former, one can obtain the combined
momentum equation for two-phase flow as follows :

du, du,
A S T

du du, duat,
+a/a,[p,u/a—z’—p,uli]—l’—a—z—=6 (12)
where F and G are defined as
AP , T ApgDcosh ’ (13)

4  siny

S, S,
70(/ +t,7(a,+a,)

-, T(u, —u,)—o, T(u, —u,) (14)

and the constitutive relations for shear stresses, Ap

and I' and are given by the following :
(15a)

T, = fz—lp/|ul |“!
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T, =%p‘lu,|u, (15b)
T, =—2'—p'|u,|u, (15¢)
Ap=p, -p, (16)
Q.
r=-— (17)

In Eq.{15c¢), denotes the relative velocity between
the two-phase (i.e, u.=ug*u;), where the positive
sign is applicable for countercurrent flow whereas the
negative sign is applicable for cocurrent.

3. Irregular Singular Points and Hyperbolicity
Breaking for Transient One-Dimensional
Two-Phase Flow Equations

The mathematical models of the above transient
one-dimensional two-phase flow equations, i.e., Eqgs.
(10), (11), and (12) can be brought to the form of a
system of first-order, quasi-linear, partial differential

vector equation as follows :
. X,
A, (X )-a-x—’+B,(x.)-—'-=c, (18)
v ! a [ v J a z

Here the matrices and A; and B; the column vectors
X; and C; are defined as follows :

[-a,a,p, @,ap, O
a= o o 1 (19a)
| 0 0 -1
[-o,0,p,u, a,0p u -F
B, = a, 0 u, (19b)
L 0 a, -u,
u'
Xl =|u, (19(:)
al
G
-T'/p,

It may be noted here that Eq.(18) is similar in
form to Lyczkowski et al’s Eq.(A1){10]. Here the
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33 square matrices A; and B, and the column vec-
tor C; depend only on (X, ¢, z}, whereas X is a col-
umn vector of 3 dependent variables of two-phase
flow dynamic quantities (i.e., ug, s, and o) which are
functions of two independent variables z and ¢.

Introducing the new coordinate &=it+z Equa-
tion (18) can be transformed into the following :

x,

(A1 +B) =5 =C (20)

g - i

For this hyperbolic equation, the characteristics
must be real and non-zero. To find the condition
under which Eq. (18) becomes singular points, Eq.
(20) is rewritten by application of Cramer’s rule as
follows :

oX, wn N
—a—é——(A,,K+B,,) C'_A(x,) {21)

where A(X) is determinant given by

acx))=|ar+5,| (22)

and N(X, &) are also determinants, each obtained
from (A;4+ B;) by replacing the j-th column by C,.
The phase space of Eq.(21) is constructed of the
n+1 dimensions which consists of the n compo-
nents X (i.e., ug, uy, and a,) and of coordinate ¢. In this
phase space, there are three classes of points:{1)
regular points (if A(X)#0), (2) tuming points (if A(X
)=0 and N #0), and (3) singular points (if A(X)=0
and N =0)[11] as illustrated in Appendix II.

If A(X)#0, a point in the phase space is a ‘reg-
ular point’, whereas all points in the space which sat-
isfy the condition are either ‘tuming points’ or ‘sin-
gular points’ [11]. However, these conditions depend
on the values of characteristics in Eq.{22). Lyczkow-
ski[10] showed that most two-phase flow models
proposed in the literature vield complex-valued char-
acteristics in the practical regions of interest for the
two-phase steam-water systern.

There are three different types of solutions to the
characteristic equation corresponding to Eq.(22) (see
Eq.(24)):(1) two different real roots (hyperbolic
equation domain), (2) only one real root (parabolic
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equation domain), and (3) no real roots and two
complex roots {elliptic equation domain). Physically,
the hyperbolic equation domain represents a regular
flow, the elliptic equation domain represents a differ-
ent type regular flow (instability), and the parabolic
equation domain represents the neutral stable state
between regular flow and unstable flow [12].

If the characteristics at singular points are inflected

nodes (4 = 42 real), the hyperbolicity of the two-phas-

e flow equation is broken and a regular flow pattern
changes to another flow pattern. (The definition of
inflected nodes is given in Appendix III.)

For the purpose of the present work, the above
mathematical background can be briefly summarized
as follows : The ‘irregular singular points’ occur when
both conditions of (1) A(X) and the hyperbolicity
breaking are satisfied and (2) N, =0. The conditions
of hyperbolicity breaking, on the other hand, are (1)
inflected nodes (41 = 4> real) and (2) parallel lines (4
1#0, 42 =0 real).

4. ‘Onset of Slugging Criterion’ from Analyses
of Singular Point and Neutral
Stability Conditions

4.1. Singular Point and Neutral Stability Condi-

tions

Since the parabolic domain that corresponds to
the single real root of Eq.(22) represents the bifur-
cation of the instability, this ‘neutral stability con-
dition’ in addition to the condition of A(X)=0 (ie,
‘tuming points’ or ‘singular points’) is used to derive
the ‘onset of slugging criterion’ as follows :

From Eq.(21), the gradient of the void fraction
along the gradient of is given as

aal N“.

IE  AX) (23)

J

where

A(X,)=|ar+B)]

—o,a,p, (u +X) o,a,p,(u, +A) -F
= ax 0 (u,+l)
0 a, —(u, +2A)

=a,p,(A+u) +a,p,(A+u,)’

0AP _ m ApgDcos6
"“’a'{(aa HZ siny

1=0 (24)

and

—a,a.p, (u,+A) a,o,p, (u, +A) G

N = o 0 T
a, 7 A’

0 o]

S
. /
=a,a,(p, -p‘)gsme—'r/—A o,

S, S,
+1,-7a/ +‘:_7(a,+(x,)

+I‘[a,(k+u‘)+o¢‘(k+u,)]:0 (25)

Now, the condition of hyperbolicity breaking at sin-
gular (and/or turning) points can be found by first find-
ing the characteristics from the solutions of the char-
acteristic equation A(X)=0 and then by checking
whether the characteristics obtained from this equa-
tion become inflected nodes {discriminant in Eq.(29)
is zero) or parallel lines (In Eq.{29), ¢ =0) :

Equation (24) can be rewritten as follows :

2 2
alplut +axplul + alpxul +atplul -F

AT+ 2A( =0
a/p, +a'pl a/px +axp/

(24a)
Rewnriting Eq.(24a) as
AM+2rA+g=0 (26)
where
o JPst TP, 27)

a/pl +uxp/

a,p,u +o,pu; - F
q= Is 157 (28)

«,p, +,p,

Solving Eq.(26) for 4, one can obtain
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A=-rt r’—;

{29)

Now, the neutral stability condition can be obtain-
ed by putting the discriminant of Eq.(29) to be zero.

r’-g=0

{30)

Using Egs.(27) and (28) in Eq.(30), following rela-

tions can be obtained :

2 2
(u,_u/) =u,

OAP,

n ApgDcos®

o,p,+a

=G50+

14

)X

sin’y

Py y (31)

Equation (31) is a primitive form of the onset of
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transient one-dimensional two-fluid governing equa-
tions of two-phase flow. This equation may be con-
sidered to be a more general expression than the
existing models for the onset of slugging shown in
Table 1 in the sense that Eq.(31) includes the effects
of both surface tension and pipe inclination. Equa-
tion (31) in its present form, however, is not useful
for comparisons with existing models and experimen-
tal data to examine its applicability and accuracy. To
obtain a simpler and more useful criterion for the
onset of slugging, therefore, simplifications and mod-
ifications of Eq. (31) are made as shown in the fol-

lowing.
slugging criterion that results from the analysis of a
singular point and neutral stability conditions for the
Table 1. Summary of Various Models for the Onset of Slugging Criterion
Geometry Basic Dimensionless Form
Authors (Wave) Equation Slugging Criterion in Horizontal Condition
v]\;z]tl;issof Rectangular Duct Laplace = as ETPr ey, Jp= 05,
(1973) (Small- amplitude) Bemoulli Fr
Taitel & Dukler Duct & Pipe Bernoulli 20— / K“.‘P/ Py jo= o
(1976) (Solitary-Roll) Momentum
Gardner Duct Energy w=Fy (SH(P/'P,)))Q dv_ fe it Fa
(1979) (Large-amplitude) Continuity [ R L
By =Re,.pyp)
Mishima & Ishii | Rectangular Duct Ls&:sze 2 EHLO Py L fE Lo
(1980) (Finite-amplitude) instability Ps LG
Lin & Hanartty Pipe M(:‘rpenlum &'K('w’ L = Kt
(1986) (Film wave) inStl:beS;ty K= 1@, v o
Crowely et al. Pipe Momentum ap — )"u. B F_Tf_/.[(..ﬂ, 1% 5
N g 7 P, a, Y, ap o, 4t
(1992) (Large-amplitude 1-D wave e By By % e
Long wave) theory TR
Brauner & Pipe Momentum | «* --‘%(Aaxwwwk‘) ;i- Jg;—u
Moalem Maron | 5 : . - _ . s
ge-amplitude Linear 0 Az dh i,
(1992) Long wave) instability i T‘::%"” T -1 e ora ’]M( 0o )“
i Energy .
Chun et al. Duct & Pl'pe Wave 1y 0 e 80 LAY ji=0470a, '
Present Pipe Momentum n,=(l-—”l§)!(i’::;ﬂ)xt“ J JE_"L,
. . @y Yps @y
Model (Large-amplitude Nonlinear k10320 Mw’ By
Long wave) lnstablllty ap, — )[(“—X )Im
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4.2. Final Form of the Onset of Slug Flow Cri-
terion

The first term on the right hand side (RH.S.) of
Eq.(31) represents the effect of surface tension force
whereas the second term includes the effect of gravi-
tational force. In those waves which form slugs, it can
be shown that the first term on the RH.S. of Eq.(31)
is negligibly smaller than the second term. That is,

JA P < ApgDcos
da, 4 siny

(32)

When the first term on the RH.S. of Eq.{31) is
neglected, Eq.(31) reduces to the following :
_ _EApa,gDcose)(Ha/px

- »n” (33)
4 p,siny a,p,

u

When Eq.(33) is compared with the existing mod-
els shown in Table 1, it can be noticed that the nu-
merical coefficient of the existing models obtained by
Wallis and Dobson [2], Mishima and Ishii [5], and
Chun et al.[9] varies from 047 to 0.5, whereas Eqg.
{33) has an extra coefficient of (1 + ap,/ 2,0)"°.

For flow in round pipes and for disturbances of fi-
nite amplitude, Taitel and Dukler [3] speculated that
the coefficient to be used in their model can be estim-

ated as follows :
C=1-H,ID (34)

A close examination of Eq.{33) shows that this
equation does not explicitly include the effect of the

liquid depth (H;) on the slug flow formation for a giv-

en pipe diameter. Therefore, a parameter to be used

in Eq.(33) is sought to satisfy the following physical

conditions :

(1) When the equilibrium liquid level approaches the
top of the pipe (i.e., H =D} slug flow occurs at
zero critical relative velocity (u;.. =0).

(2) Conversely, when the equilibrdum liquid level ap-
proaches zero (ie., H =0) the slug flow occurs at
the maximum critical relative velocity for given
conditions. In fact, slug flows cannot occur in this

case.

(3) The wave amplitude (or the critical relative vel-
ocity ) at which slug flows occur decreases linear-
ly as the equilibrium liquid level (H) is increased.
For example, when H; is increased from H =D/2
to H =3D/4, the wave amplitude (or u,.) need-
ed to form a slug flow decreases by one-half.

It can be recognized that the coefficient used by
Taitel and Dukler [3], i.e., Eq.(34) satisfies all the
physical conditions specified above. To incorporate
the above physical conditions into the present model,
Eq.(33) is modified as follows :

n Apa, gD cosH

[0 3
)1+ a'p’)]‘” (35)

it

u, ., =0 --f-l-/—)[(—
e D 4 p, siny

Equation (35) is the final form of the onset of slug
flow criterion. Note that Eq.(35) gives the critical rel-
ative velocity at which the transition occurs from a
stratified to a slug flow in horizontal or inclined pip-
es. It may be noted here that for all practical condi-
tions of air-water {or steam-water) two-phase flow
g/ %epy 1. Therefore, Eq.35) can be further

reduced to a simpler form as follows :

H, nApw,gDcosd |
w ,, === . or

D 4 p,siny

1+ n Apa,gDcos8
4, = (2 ® ] (35a)
2 4  p, siny

5. Results and Discussion

For convenience in comparing between the pres-
ent model given by Eq.(35) with existing models and
experimental data, the slug formation criteria in-
cluded for comparison are first transformed into di-
mensionless forms as follows :

Taitel and Dukler’s criterion [3]:

j=a” (36)

11

Mishima and Ishii’s criterion for a slug formation

(5]: N
jl L j, 0.5
L L N TRty
o, ‘/:,a/ 0487, (37)
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Chun et al.’s criterion [9] :
j, =04700" (38)

Present criterion given by Eq.(35) :

j* P H o 0 o
Je p_'.{’_=(1-.__’)[(£'__mi_.)(|+EL_’-)]°J, or
a, p, a, D 4 siny p, o,

s . . 0
I ’P_,J_,=(1 i-cosy)[(ﬂ: o, cos )(1_‘_2,_&_

/ )]O.S
a, p, o, 2 4 siny p, o,
(39)

In the above equations, j; and j, and are defined by

P, s

i, =il ApsD (40)
oo Py os
i = 1,[———Apg D] (41)

In Fig. 2, j, versus a, curves obtained by various
models expressed in dimensionless forms as above
are compared with existing data. It can be seen from

Fig. 2 that for the onset of slugging in horizontal pip-

T T M T T
Protebilty of H
Symet ShugOcomcrmece  Reference H
[ ] 100% [Ref 9]
[ A 0% [Ref.9}
=] 0% [Ref.9}
» Nakamun {Ref.14) 3
08 |- X 3 s
Experimental Conditions

ID(m) L{m) Pressure Conditions

[Ref9] 005 84 O0.IMPa  siffwater

MRef.14) 0087 64 3 MPa steamiwaler

Presest Model: 7

0.6 | J =1 scomp 2N/ 4sinV) P OLS I -
g * .
a -
g ;
o Taited & Dukler's Modet: j "malS { /]
2 T By Y e
y
Ja

04 |-

3 [o] .o
N P
s 25
$ P
I el E
Y o,
4 e
7 !
-

02t

%5
a =(x-psimeon)/x
Fig. 2. Comparison of Present and Existing Model Pre-

dictions with Experimental Data for the Onset of
Slugging in Horizontal Pipes
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es Eq.(35) (or Eq.{39)) agrees very well with Taitel
and Dukler's mode! [3], in particular, and also with
existing data for a broad range of a, values.

In Fig. 3, on the other hand, j, versus «, curves
obtained by various models for an inclined pipe (0
=50°) are shown along with experimental data re-

ported by Ohnuki et al. [15]. This figure shows that for
o, between 0.5 and 0.8 (i.e, within the range of ex-

perimental data given), prediction of the present
model agrees more closely with the experimental
data of Ohnuki et al.[15] than those of existing mod
els.

6. Conclusions

1. A more general expression than the existing mod-
els for the onset of slug flow criterion, represented
by Eq.{31), has been derived from singular points
and neutral stability conditions of the transient
one-dimensional two-phase flow equations of

Ohnuki etal's [Ref.15] Data (Ioclined Pipe. 8=50°)

Taite) and Dulder's Model: &
eyl 7

Symbol Pressure Lim) Dia(m) P 7

A UPTF. 03MPa 21 076 Wik Huue \ e

O UPTF, 1S5MPa 71 076 Wit Huae
S TypeA. O.lMPa 026 0234 No Hutze
W TypeB, 0.1MPa 026 0254 With Huuze

0.5 Tet Section Shape

=

Present Model (8=0%)
J =l ecomp 2l dsimpPoS '3 y
. Mishima ad Ishii's

: j *=0.4! 1.5
v oMod:I i,'=0.487 al3]

.._. ‘,,
iy JapgD}

Presess Model (9=50°) e
§ 0 corp2NmmoeRy 4sinpB3 ot (L

0.05

0.2 o 0.6 t;.a Ll
ag;-(x-‘rtsinmsy)lu
Fig. 3. Comparison of Present and Existing Model Pre-

dictions with Experimental Data for the Onset of
Slugging in an Inclined Pipe(6=50°)
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two-fluid model. volumetric flux, m/s

2. The final form of the present model, Eq.(35), has j*  dimensionless volumetric flux, j I App:;D 1es

been obtained by introducing simplifications and momentum per unit volume, N/m?
incorporating a parameter into the general form
to explicitly include the effect of liquid depth (H;)

on the slug flow formation. The parameter, which

M
N  determinant
P  pressure, N/m?

AP, interfacial pressure difference, P;— Py, N/m?

has the same form as the coefficient of Taitel and Q. heat source, d = kg m?/s*

Dukler's model[3], has been chosen to satisfy % 5 principal curvatures, m

th . dit - ified.
ree physical conditions a priori specified " time, sec

3. Comparisons between the models transformed .
: u  velocity, m/s

into dimensionless forms and experimental data .
' P u, relative velocity, u,—uy, m/s

show that the present model agrees very closely X column vector

with Taitel and Dukler's model [3] and exper- 2z spatial coordinate

imental data for the onset of slug flow in horizon-
tal pipes. In an inclined pipe (6 =50°), however, Greek Letters
the difference between the predictions of the pres-
ent model and those of existing models including volume fraction (or void fraction)

Taitel and Dukler’s is appreciably large and the mass exchange rate, kg,

present model gives the best agreement with

stratification angle, radian or degree
Ohnuki et al. ’s data [15].

characteristics

Acknowledgment .
wave coordinate

o
r
r
[Z] angle of inclination, radian or degree
A
¢
p  density, kg/m?

The authors gratefully acknowledge the financial Ap density difference, p— py kg/m®

support of the Korea Atomic Energy Research Insti-
tute (KAERI) and the Korea Electric Power Corpor-

¢ surface tension

7 shear stress, Pa=N/m?.

ation (KEPCO).
Subscripts
Nomenclature crit  critical value
f liquid phase
A  area, m* g gas phase
A matrix i interface
By matrix r relative value
C,  column vector
D  pipe diameter, m Superscripts
f friction factor

g  acceleration due to gravity, 9.806m/s dimensionless value
H total channel height, m
H  liquid level, m References

i, latent heat of evaporation or condensation,

J/kg 1. ES. Kordyban and T. Ranov, “Mechanism of



308

10.

11.

12.

. G.B. Wallis and J.E. Dobson,

Slug Formation in Horizontal Two-phase Flow”,
ASME Joumal of Basic Engineering, 92, 857
{1970)

“The Onset of
Slugging in Horizontal Stratified Air-Water
Flow”, Int. J. Multiphase Fow, 1, 173 (1973)

. Y. Taitel and AE. Dukler, “A Model for Predict-

ing Flow Regime Transitions in Horizontal and
Near Horizontal Gas-Liquid Flow,” AIChE J. 22,
47 (1976)

. G.C. Gardner, “Onset of Slugging in Horizontal

Ducts,” Int. J. Multiphase Flow, 5, 201 (1979)

. K. Mishima and M. Ishii, “Theoretical Prediction

of Onset of Horizontal Slug Flow”, ASME Jour-
nal of Fluids Engineering, 102, 441 (1980)

. P.Y. Lin and T.J. Hanratty, “Prediction of the

Initiation of Slugs with Linear Stability Theory”,
Int. J. Multiphase Flow, 12, 79 (1986)

. N. Brauner and D. Moalem Maron, “Stability

Analysis of Stratified Liquid-Liquid Flow”, Int. J.
Multiphase Flow, 18, 103 (1992)

. C.J. Crowely, G.B. Wallis and J. J. Banry, “Vali-

dation of a One-Dimensional Wave Model for
the Stratified-to-Slug Flow Regime Transition,
with Consequences for the Wave Growth and
Slug Frequency,” Int. J. Multiphase Flow, 18,
249~271 (1992)

. Chun et al,, “A Criterion for the Onset of Slug-

ging in Horizontal Stratified Air-Water Counter-
current Flow”, Proceedings of NURETH 7 Meet-
ing, Saratoga Springs, September10-15, 1, 93
(1995)

R.W. Lyczkowski et al,, “Characteristics and Sta-
bility Analyses of Transient One-Dimensional
Two-phase Flow Equations and Their Finite Dif-
ference Approximations”, Nucl. Sci. Eng., 66,
378 (1978)

Z. Bilicki et al., “Trajectories and Singular Points
in Steady-State Models of Two-phase Flows”,
Int. J. Muitiphase Flow, 13, 511 (1987)

J.Y. Lee. and H.C. No, “Hyperbolicity Breaking
and Flooding”, Nucl. Engrg. Des., 146, 225

dJ. Korean Nuclear Society, Vol. 29, No. 3. June 1996

13.

14.

15.

16.

17.

{1992)

M. Ishii and K. Mishima, “Two-fluid Model and
Hydrodynamic Constitutive Relations,” Nucl.
Engrg. Des., 82, 107~126 (1984)

H. Nakamura et al., “Flow Regime Transitions in
High-pressure  Steam-Water-Horizontal ~ Pipe
Two-Phase Flow”, ANS Proceedings 1991 Na-
tional Heat Transfer Conference, July 1991, Min-
neapolis, Minnesota, 5, 269 (1991)

A. Ohnuki, H. Adachi and Y. Murao, “Scale Ef-
fects on Countercurrent Gas-Liquid Flow in a
Horizontal Tube Connected to an Inclined Ris-
er”, Nucl. Engrg. Des., 107, 283 (1988)

MB. Abbott, An Introduction to the Method of
Characteristics, American Elesevier Inc, New
York (1966)

W. Jordon and P. Smith, Nonlinear Ordinary Dif-
ferential Equations, Clarendon Press, Oxford
(1977)

Appendix 1. Derivation of Variables in the Pipe

Geometry

Considering the stratified flow in pipe show in Fig.

1, the area values (4, A;, A) can be expressed as fol
lows :

R

R

A, =[D*(y-sinycosy)]/ 4 (I-1)
(1-2)

(1-3)

A, =[D*(rn-y+sinycosy)]/4

A = [nD)/4

The water depth can be written as :

H, =[D(1-cosy)}/2 (1-4)

And wetted perimeters (S, §;, S,) can be:

S, = Dsiny (1-5)

S, =Dy (1-6)

S, =D(n-Y) (I-7)
Volume fraction can be:

= =—l—(7—sinycosy)=%(7—5i—n22—y) (1-8)

in2
(m -y +sinycosy) = %—(ﬂ-‘r*f'm—nz—Y-)(IQ)

> |.>- = Ij-’*

Al—



Onset of Slugging Criterion Based on Singular Points and Stability Analyses---C K. Sung and MH. Chun 309

We can be obtained spatial derivative terms as fol-

lows :
dH, D
—L = Zsin (I-10)
" Y
do,  2sin’y
P == (I-11)
da, da, 3 H, (112)

The substitution of the above relations Eq. (I-10) to
Eq.(I-11) into Eq.(I-12) gives to vield the following
equation :

Jo, 4  OH,
EEET Py 3
therefore,
8 H/ __ D 8 (1’
dz  4siny 9z

(I-14)

Appendix II. “Three Classes of Points in the
Phase Space Q”

1. Three Classes of Points in the Phase Space

[11]:

(1) Regular points : A point (£°, X°) in phase space
is called ‘regular’ if A(X))#0.

(2) Turning points : The points (<, X') which be-
long to 7 but not to S are called ‘turning
points.’

(3) Singular points : The points (&7, X} which be-
long to S as well as 7 are called ‘singular
points.’

2. Hypercyliner (T), Hypersurface (X)), and the

Manifold (S) :

(1) The condition defines the hypercylinder 7
and each of the conditions defines a hypersur-
face 3.

(2) The manifold S of dimensions is the intersec-
tion of hypercylinder 7 with one hypersurface,
say Z\(N 1 =0).

It is assumed that the two hypersurfaces intersect

transversely. The theorem [11] asserts that all on 7,

and this implies that all remaining hypersurfaces
must necessarily intersect 7 at S. This situation is il-
lustrated in this figure.

Appendix [lI. “Classification of Topological
Patterns for the Linear System”[11, 16, 17)

From the A(X,)=0, we find following eignvalue
equation
N +2rh+g=0 (II-1)
which is called the characteristic equation. When
this equation has two different roots, i1, 42, two lin-
early independent families of solutions are generated
by & corresponding to and A =41 and 4 =/, respect-
ively.
Let ® be the discriminant :
O=r'-g (-2)
then the roots of Eq.(Ill-1} are given by

Singular points _J ... _.}.

X1

Fig. [I. Definition of Manifold S as the Intersection be-
tween A(X)=0 and All N=0 and [lustration of
Three Classes of Points in the Phase Space Q
(11}
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;" =-rtJo (I1-3)

2

The solution of eignvalues {41, 42} quoted in A(X;)
=0, admit several types of topological patterns, (1)
saddle points, (2) nodes, (3) spirals (or foci), (4)
inflected node, {5) parallel lines, etc., depending on
the relationships obtaining between the constants;
theses are illustrated with the aid of Fig. (I} which
correlates each pattern with the eignvalues. In par-
ticular,

(1) Saddle points (41, 2 real, with different signs)
* A saddle point there are pass exactly two trajecto-

ries
¢ The discriminant is positive, hyperbolic equations

domain
¢ The equilibrium point is a saddle point, which is
always unstable

¢ Two real characteristic slops. Discontinuities in sec-

ond derivatives are thus propagated in two direc-
tions, and two characteristic curves may pass
through every points in that space.
(2) Nodes (A1, 42 real, same sign, 417 )

¢ A nodal point there passes an infinity of trajector-
ies

¢ The discriminant is positive, hyperbolic equations
domain

¢ The equilibrium point is unstable node(r<0), or
stable node(r>0)

¢ Two real characteristic slops. Discontinuities in sec-

ond derivatives are thus propagated in two direc-
tions, and two characteristic curves may pass
through every points in that space.
(3) Spiral or focus (41, 42 complex with non-zero
real part)

* A spiral there pass no trajectories

¢ The discriminant is negative, elliptic equations do-
main

* The equilibrium point is a stable spiral if Re(4,)<
0 and an unstable spiral if Re(4,)>0

¢ Characteristic directions are imaginary. Disconti-
nuities are not propagated in this case, so that dis-

dJ. Korean Nuclear Society, Vol. 29, No. 3, June 1996

continuities in sources, sinks and boundaries are
not transferred to the integral surface, there being
no mechanism for such a transfer.
(4) Inflected nodes (4, = 4 real)
¢ A inflected nodal point there passes an infinity of
trajectories
e The discriminant is zero, parabolic equations do-
main
¢ The equilibrium point is unstable inflected node
{r>0), or stable inflected node {r<0)
¢ Only one slop. Discontinuities are then propagat-
ed in only one direction.
_ (5} Parallel lines (1, #0, A2 =0 real, g =0)
¢ Parallel lines there passes one trajectory
¢ g=0, hyperbolic equations domain
¢ The equilibrium point is parallel lines
Fig. (I) shows the nature of equilibrium points on
the plane. The stable equilibrium points lie in the
quadrant r>0, ¢=0 except (r, q) =(0, 0).
Therefore, the conditions hyperbolicity breaking
are as follows two points.
{a) Parallel lines : This condition is named as a crit-
ical condition.
(b) Inflected nodes : This condition is named as a
neutral stability condition.

Elliptic equation domain
[\
Unstable inflected node 1 d
(Parabolic equation domain)

Unstable Stable
\ gl | e /
Unstable node

Stable inflected node
. (Parabalic equation domain)

Stable node

Hy%licqmﬁmdomﬁn \ / Hopesbolic gauaton domain
R > 4 o
~ Paraliel line ?
Parallel line
Saddle points
© Unstable
Hyperbolic equation docaain ® Suble

Fig. Il. General Classification of Topological Patterns
for the Linear System



