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Abstract

A simple and new uranium analysis technique for raffinate solution of nuclear fuel conver-
sion process was developed using a time-resolved laser-induced fluorimetry. The addition of 4
M-phosphoric acid more than 10 times in volume to the raffinate sample was found to be effi-
cient for obfaining stable uranium fluorescence signal which was not influenced by many
fluorescence quenchers. A calibration curve of a good linearity for the fluorescence intensity
vs. the uranium concentration was obtained at the range of 3.0X10 °—6.0x 107> M UOZ" in

the raffinate samples.
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1. Introduction

The uranium concentration in raffinate solution
of nuclear conversion process is estimated to be
ca. 4.2X107° M (10 ppm). The quantitative analy-
sis of uranium is necessary to improve uranium
economy or to protect the environment from wa-
ter pollution. However, the analysis of uranium in
raffinate solution is difficult due to its complicated
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components(NO3, Fe?*, Ca®?* Mn®", etc) and
high acidity(pH<1). The conventional methods,
such as the chromatography, the « -particle
counting techniques, the neutron activation, the
mass spectrometry, and so on, have been utilized
to the analysis of raffinate solution [1—3]. These
methods are inconvenient and time—consuming
due to the complicated sample treatment or the

large instrumentations. The main compositions of
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Table 1. The Chemical Components of the Raffinate Solution in Nuclear Conversion Process.

Comp. Conc.(ppm) Comp. Conc.(ppm) Comp. Conc.{ppm)
Fe 1600 Al 363 Si 21
Cu 2.7 Pb 24 Mo 4.6
Cr 2.3 Ca 76 NO; 37000
Mg 64 Sn 0.6 Co 0.7
Ni 0.9 B 2.0 Zn 44
Mn 61 U 12

Acidity : pH 0.14

the raffinate solution are listed in Table 1 [4].

The laser-induced fluorimetry is considered to
be a powerful and simple method for the quantita-
tive analysis of uranium. However, for the applica-
tion to the sample with complex matrix like the
raffinate solution, the laser-induced fluorimetry has
some limitation due to the fluorescence quenching
by Fe, Mg, Ca or NQOj, etc.

In case of the time-resolved laser-induced
fluorimetry, it is easy to reduce the procedures of
sample treatment by the simultaneous use of
wavelength resolution and time resolution of
fluorescence. For the purpose of finding out a
simple analytical method for the raffinate solution,
we utilized the characteristics of the time-resolved
laser-induced fluorimetry. Since the phosphoric
acid was known to make a stable complex with
uranyl ion[5], the additive effects of phosphoric
acid were investigated.

2. Experimental Sections

A home-made Ns-laser induced fluorimeter was
used in this experiment, and the details are de-
scribed elsewhere[6—9]. The excitation source
was a N, laser (Laser Science Inc.), peak power
40 kW, repetition rate 10 pps, and output energy
120 #J/pulse. The fluorescence lifetime and the
intensity of fluorescence at time zero were mea-

sured by using a 4-channel A/D converter with

resolution of 8 bits, which was connected to a
personal computer (compatible with [BM 286 AT)
through a RS-232C interface. The time evolution
of uranium fluorescence intensity induced by a
pulsed Ny laser revealed an exponentially de-
caying curve. Using the integrated values of the
two gates on the fluorescence decaying curve, the
fluorescence lifetime and the fluorescence intensi-
ty at time zero were calculated [8]. The delay time
or the gate time control in the fluorimeter can be
done by a step of 1 s,

3. Results and Discussion

Phosphoric acid is known to improve photo-
emission intensity of the uranyl ions at
wavelengths of 501, 521, 543, and 570 nm by
making a complex with uranyl ions[10]. In this
experiment, we investigated the additive effects of
phosphoric acid to the raffinate samples of nuclear
fuel conversion process. The standard solutions of
uranium were prepared by dissolving UO; powder
in the concentrated nitric acid and diluting with
distilled water.

The uranium fluorescence intensity as a function
of the phosphoric acid concentration is displayed
in Fig. 1. The samples were prepared by adding
0.5-10 M phosphoric acid to the raffinate solu-
tion. The volume percentage of raffinate in the
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Fig. 1. The Intensity of Uranium Fluorescence as a
Function of the Phosphoric Acid Concentra-
tions in the Raffinate Samples ( [Raffinate
Solution] /( {Phosphoric Acid] + [Raffinate
Sample]) ; 3%)

sample solution was ca. 3%. The resuits showed
that the addition of 3—5 M phosphoric acid was
good enough to obtain a high intensity of uranium
fluorescence.

In case of the measurement of fluorescence in-
tensity, the dilution effect on collisional quenching
caused by the addition of additives reveals to be
exponential, though the effect on fluorescence sig-
nal intensity is linear. Therefore the maximum
dilution is necessary to the sample including large
amount of fluorescence quenchers like a raffinate
solution at the sacrifice of the signal intensity de-
crease. Table 2 shows the additive effects of 4
M-phosphoric acid to the raffinate solution. The
fluorescence intensity and the fluorescence lifetime
were measured as a function of the raffinate per-
centages in the sample solutions diluted by 4 M-
phosphoric acid. The fluorescence intensities were
varied with the raffinate percentages. It was shown
that the raffinate contents less than 10% were
necessary in order to obtain stable fluorescence
lifetimes regardless of the addition of phosphoric
acid. At higher raffinate percentages, the fluoresc-
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Table 2. Uranium Fluorescence Characteristics of the
Raffinate Samples as a Function of the Raf-
finate Percentages in 4M-Phosphoric Acid.

Raffinate Fluorescence Fluorescence
Percentage(%) Lifetime(sec) Intensity(arb.)

1 95%x107° 53%x10°°

2 1.1X10™4 83x10°°

5 1.2x1074 1.6x1077

9 1.2x107™* 3.0%x1077

17 8.6%X1075 44x1077

33 51x107° 7.8x1077

50 33%x10°° 1.1x1078

60 29x107° 1.2x1078

ence lifetime was shown to be decreased. It is due
to the increase of quenching effect by various ions
in the raffinate solution.

Fig. 2 demonstrates the time evolution of the
fluorescence intensity emitted from a raffinate—4 M
phosporic acid mixture which was measured by a
oscilloscope, LeCroy 9400A. Though the fluoresc-
ence for raffinate sample was unmeasurable, the
addition of phosphoric acid made the fluorescence
measurement possible. Fig. 2 shows that fluoresc-
ence intensity decreases with the decrease of the
raffinate percentages. However, fluorescence life-
time shows the opposite trend. The high fluoresc-
ence intensity at a high raffinate percentage is
considered to be resulted from the net increase of
uranium content. But the decrease of fluorescence
lifetime at a high raffinate content is thought to be
due to the increasing quenching effect. Therefore,
in an appropriate range of raffinate content, the
phosphate ions would make a stable uranyl com-
plex in the acidic uranium aqueous solution {<pH
3).

The calibration curve of the fluorescence in-
fensity vs. the uranium concentration is displayed
in Fig. 3. The calibration data were obtained using
a raffinate solution added by standard uranium
and 4 M—-phosphoric acid solution. The uranium
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Fig. 2. Time Evolution of Uranium Fluorescence In-
tensity of the Raffinate Solutions at a Various
Ralffinate Percentages in the Phosphoric Acid
Solution(A ; 60%, B ; 20%, C ; 100%).
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Fig. 3. The Calibration Curve of Uranium Fluoresc-
ence Intensity in a Raffinate Samples Mixed
with 4 M-Phosphoric Acid. The Different Ura-
nium Concentration of Each Solution Was
Made by the Addition of Standard Uranium
Solutions.( [Raffinate Sample] /( [Phosphoric
Acid] + (Raffinate Sample]) ; 5%

concentrations of the measurement samples were
controlled to be within the range of 3.0X
1075~ 6.0 X10™°> M UOZ™. And the raffinate con-
tents in the measurement samples were made to
be 5% by adding 4 M-phosphoric acid. The

calibration data revealed that the addition of phos-
phoric acid to the raffinate sample was very effi-
cient to the quantitative analysis of uranium.

4. Conclusions

A simple method for the quantitative uranium
analysis in the raffinate sample was developed
using a time-resolved laser-induced fluorimetry.
The addition of phosphoric acid was efficient to
prevent the quenching effects from the various
quenchers included in the very acidic raffinate
samples (pH 0.14). A good calibration curve of
fluorescence intensity vs. uranium concentration
was obtained at the range of 3.0X107°-6.0X
107° M UOZ" by adding 4 M—phosphoric acid to
the raffinate samples.
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