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Abstract

A stochastic method using continuous time Markov process is presented to model the
one—dimensional convective nuclide transport in geologic media, which have usually heter-
ogeneous feature in physical/geochemical parameters such as velocity, dispersion coefficient,
and retardation factor resulting poor description by conventional deterministic advection—dis-
persion model. The primary desired quantities from a stochastic model are the mean values
and variance of the state variables as a function of time. The time—dependent probability
distributions of nuclides are presented for each discretized compartment given the volumetric
groundwater flux and the intensity of transition. Since this model is discrete in medium space,
physical/geochemical parameters which affect nuclide transport can be easily incorporated for
the heterogeneous media as well as remarkably layered media having spatially varied para-
meters. Even though the Markov process model developed in this study was shown to be
sensitive to the number of discretized compartments showing numerical dispersion as the
number of compartments are increased, this could be easily calibrated by comparing with the
analytical deterministic model.
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1. Introduction

In case of simulating nuclide transport and
groundwater flow through the geologic media
around the repository in which radioactive wastes
are disposed of, various approaches have been
considered either in deterministic way or in
stochastic way.

Groundwater flow and nuclide transport in natu-
ral geologic system have been found to be poorly
described by the conventional deterministic advec-
tion—dispersion concept and equations. Furth-
ermore, even the spatial variability of such system
is comparatively well-known, it is often ignored
when the deterministic models are formulated. It
was reported that when deterministic approach is
intfroduced, overlooking these heterogeneous fea-
tures of the media may lead to incorrect predic-
tions of the solute transport [1]. The spatially
dependent physical/geochemical parameters (such
as velocity, dispersion coefficient, and retardation
factor) which govern the transport are accounted
for in some stochastic approach by means of dis-
cretizing the medium [2], which is similar to the
concept for multilayered media modeling. [3-4]

One stochastic process which has been success-
fully applied in various fields is the Markov pro-
cess [5,6]. Using continuous time Markov pro-
cess, the number of nuclides, or equivalent nuc-
lide concentrations in heterogeneous geologic
media can be modeled considering the nuclide
distribution as a time—dependent random variable
in a series of discretized compartments of such
media: A nuclide could move from any present

compartment in a given time interval (emigration
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process), could enter any compartment newly (im-
igration), and also could disappear from any pre-
sent compartment due to radioactive decay
(deaths). All these processes are conditional only
on the present location of the nuclide regardeless
of its present history utilizing the Markov concep-
tualization of the geologic system, which could be
considered the geologic system as discretized se-
rial geologic compartments. That is the reason
why the Markov process can be applied to.
The objective of this research is to use the Mar-
kov process to describe one—dimensional convec-
tive transport of nuclides through the medium in
the vicinity of the radioactive waste repository.
The primary desired quantities from a stochastic
model are the mean values and variance of the
state variables as a function of time. To this end
probability distributions of nuclides are presented
for each discretized compartment given the
volumetric groundwater flux as a source terrn and

the intensity of transition as a sink term.
2. Continuous-Time Markov Process

When {X(t), t=0! is a continuous-time
stochastic discrete process, it is a continuous—time
Markov process if all s, t=0, and for any non-

negative integers, s=i, j, i,-1, =", I
Pr{x(’n)=j|X('w1)=i,X(t,;.z)=i,..7,---, X(tg)=ip)=

Pr{X{t)=/1X (ta1)=i) (1)

In other words, a continuous—time Markov pro-

cess is a stochastic process having the Markov
property that the conditional distribution of the
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future state 7 at time ¢,, given the present state 7 at
time ¢,-; and all past states depends only on the
present state and is independent of the past his-
tory.

If, in addition, PriX(t,)=j|X(t,-1)=# is inde-
pendent of ¢,—;, then Markov process is said to
have stationary or homogeneous transition prob-
abilities.

For ;< the transition probability function is

defined as
Pi(n.n)=Pr{X()=j1X (n)=i} 2

where Pi{t;, t,) does not depend on the values of
X(t) for t<4,.
Also Pit;, t,) satisfies

Zf’ij(‘b'z)=1 3
J

According to the Markov property, a set of dif-
ferential equations for Py(t;, f,), which may some-
times explicitly be solved, can be derived [5]. For
homogeneous Markov process, since Pyft;, ) )de-
pends only on the difference {to—ti),

Pj(n,12)=Py(n2-1) @)
which results in Chapman—Kolmogorov equation,
by which the Pyt;, t) can be computed :

Py(ll,tz)=2 P,‘k(ll,T)qu'(T, t2) (5)
k

or equivalently for small time interval At

Pi{0,1+41) =Y, Py (0,1 )P4 (0, &) 6)
k

where the subscript k represents an intermediate
state between ¢ and j.

Let A; be the intensity of transition from com-
partment i to compartment j such that {A; At+o(
Ay)l becomes the probability that the process
makes a transition from ¢ to j during At, where of
Af) represents higher—order terms which become
insignificant as Af fends to zero.

Similarly 7; At+0(A¥) is defined as the probabil-
ity that the process leaves state i. Therefore the
probability the process will remain at t+ At in ¢
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without any transition is {I—[2;=; A;At+ 7,48 +
o(Af)}, from which, if this probability is denoted
by {1+2,At+o(Aft,

M=-[§ﬁi+m}i=l.2.~-,n (7

By definition of derivative, Eq. (6) can be rewrit-

ten as
gpy(o. )= Pu(0,1) Ay 8)
k .
with the initial condition
P;(0,0)=§ (9)

which is known as Kolmogorov forward differen-
tial equation and gives the relation between the
rate of change of the transition probability and the
intensity of transition.

In matrix notation.

Ap(H)=P@) A=A P (10)
and
P (0) = I (the identity matrix) (11)
where
PudPiAy) --- PidY)
P()= Pzg(')”d') P?::")
Pali) - - Pudt) (12)
and
Mo Az o A
NEEEE:

A method to evaluate the transition probabilities
corresponding to the transition intensity matrix A
are decribed briefly in Appendix [7,8]. Another
method of obtaining transition probabilties without
the eigenvectors is also available [e.g.7].

3. Transition Intensity

The porous medium through which nuclide mi-
grates can be considered as a finite number of »
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compartments with different processes occurring
simultaneously within compartments. These pro-
cesses include the advective transport of nuclides
due to flow of groudwater, sorption of nuclides
onto surface of soil or rock, radioactive decay,
and so on.

Once, such geologic system is assumed to have
Markov property, since the Markov process re-
quires that only the present value of the time
dependent random variable (i. e., time dependent
number of nuclides or concentration in certain
compartment) be known to determine the future
value of the random variable, the nuclide migra-
tion in geologic media, which is divided by finite
number of geologic compartments, can be mod-
eled as a time continuous Markov process, which
is continuous in time with respect to the individual
transport processes but discrete in space.

The transition probability from a compartment, ¢
to another compartment, j is affected by the in-
tensity of transition as described in the previous
section. These transition intensities are related to
the processes involved. In this study only three
processes such as transport due to groundwater
flow, sorption and radioactive decay are assumed
to be incorparated. However, diffusive transport of
nuclide is assumed to be negligible compared to
advective transport for the media having large
Peclet number.

First, the transition intensity for the groundwater
flow through some pore volume in porous
medium can be written as

h.‘,:—Qvif. (14)

Assuming that flow is well mixed with regard to

groundwater and nuclides, transition probability

due to advection can be written as
hij & +o{l)= Pr{a nuclide iniatt willbein j at (t+At)}v(15)
Similarly, nuclide can be decayed out from

compartment i at a rate represented by decay

constant. Therefore,

A& +ol)=
Pr{a nuclide at t will be decayed outat (r+Ad} = (16)

Under the assumption of linear isotherm sorp-
tion of nuclides in the medium can be introduced
into the retardation of nuclide as A;/R,, where R,
the retardation factor, is written for homogeneous

compartment ¢ of porous medium as

R =

142 Ké').
* @i (17)

With these relatioship Eq. (7) can be rewritten as
hi .
Di=- | X 2+ Aali=1,2,n (18)
#‘4 1

where A, is interpretted as the negative sum of all
probabilities of exit from compartment i.

4. Nuclide Distributions

¢ @;ﬁm‘ 49%’”(& IR Jr@i JLERL
A 1 Y
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Fig. 1. Schematic Representation of Discretized

Compartments.

Now let X(t) be the random variable represent-
ing the number of nuclides in compartment ¢ at

time ¢. For all » compartments,
X =Xi{n) Xefln)--- X1, {19)

Random vector X(t) is composed of Y(#) and Z(%),

X()=Y()+Z(1) (20)
where
Y@= 200 ()] (21)

is the number of survived nuclides, which were

originally in the system at t=0, and

Z()=[Z1()) Z2(1)--- Za(2) (22)
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is the number of nuclides that have entered the
system during the time interval (0, t) and have
survived in the respective compartment at £. Nuc-
lides in Z(#) represent new additions and are not
due to initial nuclides at t=0.

First, m{0) denote the number of nuclides in i at
t=0. At time t, each of the m{0) must be either in
one of the n compartments or disappear due to
radioactive decay. Hence,

m(0)=3. %0+ D) 23)
=1

where Y;(t) and D{t) are random variables repre-
senting the number of nuclides in j at f, which
were in ¢ at time 0, and the number of nuclides,
which were in ¢ at time 0, disappearing by time ¢
due to decay from the system, respectively.

For a given m{0), the distribution of Y1), the
remaining survived nuclides, at ¢ has multinomial
distribution according to Z P (t)=1. It is easy to
see that

Yj (l) = zl: Y,'j (t) (24)

The expected number and the variance of Y2
can be obtained by using familiar formulae of the
multinomial distribution as

L= Em07 (0 (25)
and also,
Varl¥ (0] = 21 mi(0)P5 () (1 -y (9) (26)

These expectation and variance allow us make
statistical inference as to the predictive ability of
the model.

Now at any time 7 between time 0 and ¢
suppose that nuclides flow into each compartment
at rate of £(7) per unit time. {{7) is equal to
the volumetric flow rate of nuclides into compart-
ment i and may be expressed as

G(H=0iCGi(1 V; (27)

As soon as a freshly fed nuclide enter a com-
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partment, it may begin to transfer to aﬁother com-
partment at once or may decay out. Therefore,
vector Z(t) is the outcome of sequences of events
of input, transition between the compartments,
and survival from the decay out.

The number of new nuclides that have entered
a compartment is {{7)d7. If we let {; be the
number of nuclides that have successfully entered
compartment ¢, then it has a respective probability
of P{i—7) either entering or remaining there.
Therefore a binomial distribution can be formed
for these new nuclides. Letting Z{t) represent a

random variable which is the number of nuclides
available for entry to compartment i in the time
interval (7, ¢,

N7 PRV [ L. S AR SRp for
PriZi) =) =55 daa a9 (Lo S0 4e]
(28)

For large value of {{7)d7 the binomial distribu-

tion is approximated to Poisson distribution.
Pr{z() =5) =exp (G(9 depy(e-9) DRI o)

where {(T)d7 Pyt—) is the expected number
of nuclides in j at time ¢ that have entered from
&(t)dt nuclides. Statistically, since nuclides could
enter through any compartment and each of these
events is independent of each other for distinct 7,
the Poisson distribution is a good approximation.
For Poisson distribution mean and variance of
Z{Y are commonly expressed as

t

EZ0)=Va(z@] = | X G(e)drPy(e-7)dr. (30)

Finally we can get, from Egs. (20, 25—-26, 30),
the distribution of Xi(#), the number of nuclides
remaining in each compartment that have sur-
vived, as the convolution of the two independent
distributions, Yi(t) and Zi1):

t

EX()] =3 m(0)P;() +

i=l

i G(WPi(e-9d1 (31)
&l

4
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var[X;(9)] =

!

S w01 -PN+ | D G)Pe-9dr (32)
=1 . b=l
Therefore, the mean and variance of C{t), con-
centration of nuclides in j at time ¢ are. respec-

tively,
E[G;()) = EE0 (33)
J
Var[G;()] = L0 (34

J

where V; is the pore water volume of
compartment j.

5. Numerical Mlustration

To demonstrate the use of the present stochastic
model using Markov process and to verify the
stochastic model by comparing with the determi-
nistic model, two specific simple calculations of
nuclide profiles for a column packed with
homogeneous porous soil and also for a two-
—layered column packed with two different, but
homogeneous porous soils are presented. As is
seen in Fig. 2, let’s consider a special case of the
n serial discretized compartments of equal size in
which complete mixing takes place. Nuclides enter
the system only through the first compartment and
leave it through the last compartment.

For the first example, the expression of the
mean and variance of the concentration of a nuc-
lide is formulated and computed.

The assumed column data are listed in Table 1.

For simplicity, several assumptions were intro-
duced to the specific example : first, the ground-
water flow is constant and is saturated for all col-
umn region ; second, the groundwater flow and
nuclide transport are considered to be made only

Table 1. Column Data Values Used.

Soil column Value

Dimension 10 em’ X90 cm*
Volumetric flow rate, Q[cm®/y] | 185.6

Porosity of soil, $ [cm®/cm®] 0.36

Bulk density of soil, #,[g/cm’] 16

Number of discretized 18
compartments, n

between adjacent soil compartments without up-
ward flow ; and finally, both of decay out (for firsr
example) and sorption of nuclide are negligible,
which do not affect the validity of the model.

Under the assumption made above, the transi-
tion intensity matrix in Eq. (13) becomes

4 h 0
4 oh
A=
h
0 4 (35)

which has single eigenvalue of —# with multiplicity
n and from which the transition probability {P;;(#),
j=1, ', nl can be obtained through Eq. (10) as
follows [see Appendix] :

o 0
eh
P()= 0 L e

0 e (36)
Furthermore, according to Eq. (19),

X;(0)=0 (37)
Also, if nuclides are fed to the first compartment
of the system at a constant rate of §,

&(@=[6 0.0 38)

For the second example, assuming fundamental
column data are the same as those listed in Table
1. except the inclusion of the radioactive decay
term as a sink, °°Sr was considered as a nuclide.

However, some variation was made to demons-
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Table 2. Variation of the Volumetric Flow Rate for Second Layer.

» Volumetric flow rate [cm?/y]
No. runs Begining no. of second layer T Lager 2 Layer
1 6 out of 18 185.6 185.6X0.5
2 6 out of 18 185.6 185.6X0.75
3 6 out of 18 185.6 185.6

trate the sensitivity of such main parameters as
volumetric flow rate of groundwater and decay
constant, as listed in Table 2.

Also in this example the soil column was consi-
dered to have two separately layered media, each
of which has homogeneous volumetric groundwa-
ter flow rate and is discretized into #; layers. In this
study #;=6 and n;;=12 were used.

By means of the same procedure given pre-
viously in the first case, the transition intensity

matrix may be written

da My
-hp-Ay (39)

which has two eigenvalues of ~h;— Ay and —h— 2,

with multiplicity of discretized number of each
layer.

Therefore, the transition probability {P1t), j=1,

-« nl can be obtained as follows [see Appendix]

E@i 0
j )Q“ (40)
0 | Ex{y
Meanwhile, for layered semi—infinite column,

1-dimensional advection—dispersion equation for

¢th layer is
2
R,§-%g—f‘-o,%§-m,c=o (41)
with the initial- and boundary conditions for first
layer
C(x;,0)=0 42)
C(0,1)=Coe* (43)

Cloo,)=0 (44)

An analytical solution for the first layer, subject to
Egs. (42—44), is available :

MIA?I_RIL)
erfc ADJRy

x1 + @ihér R1)1)
VaDy/Ryt

In the second layer, the boundary conditions are
the same to Eq. (44) and at x,=0

ClLt) 1 exp(-
oA zeXP(b)

g ¢ Rl)xl}erfc

45
DiR, (45)

+exp

C(x=0,)=C (x;=Ly,1) (46)
The initial condition for second layer is again

C(r2.0)=0 (47)

For second layer, a solution, subject to the above
initial- and boundary conditions, is[4]

C(xz,t)=fC(x1=L1,1)k(x2,t-r)dr (48)
0

where
k(2. 1) = X3 a1 R1)xy
2 )— r————WZt 28y QD\/R‘

e R xF

(
X°""{ 4DJR,  4D\/Ryt

A plot of normalized concentration as a function

49)

of distance in the soil column is shown in Fig. 2,
in which standard deviation, ¢, nonnegative
sqare root of the variance, which is one of the
most important moments of a distribution, is used
as a measure of the dispersion of a distribution
about its mean value.

Also, from Fig. 3, it is known that the Markov
process model presented here is well agreed to
analytical solution of Eq. (45) with some calibra-
tion of value of dispersion coefficient, even
though, as shown in Eq. (48), numerical integra-
tion procedure to evaulate the concentration for
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the second layer might be accompanied with
some truncation error. For integration of Eq. (48),
Gaussian quadrature scheme was used. The Mar-
kov process model presented in this study were

found to be sensitive to the number of compart-

0.8

06

cic,

04 -

02 -

0.0

Distance (cm)

Fig. 2. Expectancy and Variance of the Normalized

Concentration Profiles of a Nuclide at Time
=5 hrs.

(sdvaction-dispersion eq.; filled symbol}

08 D (em?hyr) = 10.0, 18.0, snd 200

Stochaatls mode]
{Markov process; open symbol} -

06
n {number of layer) » 10, 12, 15, 18, 20, and 2§

E{CICy)

02 | —e—E10

0.0 L
0 20 woimm. ::n ) 80 100
Fig. 3. Expectancy of the Normalized Concentra-
tion Profiles of a Nuclide at Time=5 hrs
Computed by Markov Process Model with
Varying Number of Compartments, Com-
pared with Advection-Dispersion Model
with three Arbitrary Values of Dispersion
Coefficients [Eq.(45)].

ment, which results in change of length of com-
partment for fixed column length. In this figure the
effect of the model due to change of the compart-
ment size through 9 cm to 3.6 cm resulting in the
change of number of compartments through n=
10 to n=25 is shown. As known from the figure
increasing the number of compartment from 10 to
25 decreases the dispersion. With calibrated dis-
persion coefficient the concentration profiles were
investigated by increasing time from t=1 hr to
10°%(= ) hrs, some of whose results are illustrated
in Fig. 4. Although compartment size or number of
compartments introduces numerical dispersion,
however, with small compensating of dispersion
coefficient, the model agrees well to exact analy-
tical solutions.

Fig. 5 is a plot of normalized concentration pro-
files for %°Sr concentration for double-layered col-
umn when the volumetric flow rate of groundwa-
ter is varied as listed in Table 2. The predicted
points denoted by filled symbols represent an esti-
mated mean concentration of *°Sr as calculated

12 T T T T

10 Fr—ee—D oD PO - = - =~ = - """ .
t = oo

08 I t=15hrs T
Markdv |

06 = . ——— Adv.-disp.

t=10hrs

0.4 |- ]

02 =

00 0000 TR = .

t=1hr
0.2 | 1 L i
0 20 40 60 80 100

Distance (em)

Fig. 4. Expectancy of the Normalized Concentra-
tion Profiles of a Nuclide Computed by
Markov Process Model (n =15) with
Varying Times Lapsed, Compared with
Advection-Dispersion Model with Disper-
sion Coefficient of 15.0[Eq.(45)].
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Fig. 5. Expectancy of the Normalized Concentra-
tion Profiles of Sr-90 Computed by Markov
Process Model for Double-Layered Porous
Media at Time t=10 yrs with Varying
Volumetric Flow Rates of the 2nd Layer by
Factors of 0.5, 0.75, and 1.0 with Respect
to the 1st Layer, Compared with Advection-
Dispersion Model with Three Arbitrary
Values of Dispersion Coefficients[Eqs.(45
and 48)].

1.20 | T L N

A E[CYCO

0.00

0 20 40 60 80 100

Distance (cm)

Fig. 6. Expectancy of the Normalized Concentra-
tion Profiles of Sr-90 at Time =10 yrs Com-
puted by Markov Process Model Including
the Radioactive Decay Term(half-life=30.2
yrs), Compared with Advection-Dispersion
Model with Three Arbitrary Values of Dis-
persion Coefficients [Eqs.(48 and 51)].
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by Markov process model, while the lines repre-
sent the concentration by the exact analytical solu-
tions (Egs. (45,48—49)).

Also, for the case that radioactive decay is in-
cluded as a sink term, a sample calculated profile
is shown compared with the analytical result is as

shown in Fig. 6.
6. Conclusions

Through this study a stochastic modeling
approach using a continuous—time Markov pro-
cess for the one-dimensional convection transport
of nuclides through the medium around the re-
pository has been carried out. By calculating the
time~dependent transition probability of nuclide
from the transition intensity between, into, and/or
from the compartments utilizing Chapman—Kolmo-
gorov equation, the expectation of distribution of
nuclide concentration can be obtained as well as
the variance of the concentration.

Since this model is discrete in medium space,
physical/geochemical parameters including veloc-
ity, dispersion coefficient, and retardation factor,
which effect nuclide transport can be easily in-
corporated for the heterogeneous media as well
as remarkably layered media having spatially
varied parameters.

Even though the Markov process model de-
veloped in this study were shown to be sensitive
to the number of discretized compartment show-
ing numerical dispersion as the number of com-
partments is increased, this could be easily cali-
brated by comparing with the anaytical determinis-
tic model.

Therefore, using this model statistical distribu-
tion of the nuclide within the discrete compart-
ment of heterogeneous media around the reposi-
tory could be well modeled by discretizing the
media considering the degree of variation of the
parameters.
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Notation

nuclide concentration in the feeding
flux Q,.

nuclide concentration in compartment i
at time ¢

dispersion coefficient in compartment i,
cm/year.

random variable representing the num-
ber of nuclides in state i at time 0,
disappearing by time ¢.

expectancy of X 1.

transition intensity from compartment ¢
to compartment ; due to groundwater
flow.

kernel used in Eq. (48).

distribution coefficient of a nuclide of
compartment i, cm?/g.

number of nuclides in compartment ; at
time 0.

transition probability matrix.

transition probability that a nuclide in
state ¢ at time 0 will be in state j at time
L

transition probability that a nuclide in
state : at time f; will be in state j at
time .

eigen raw matrix.

inverse of eigen raw matrix.

Darcy velocity of groundwater in com-
partment i, cm/year.

volumetric flow rate of feeding ground-
water to compartment 1.

volumetric flow rate from compartment
1 to compartment j.

retardation coefficient in compartment
L

state or compartment of the geologic

system.

Var (X(t)] variance of X £

V.

volume of compartment 1.

X
Xt

Y

Yyt

random variable at time ¢.

random variable representing the num-
ber of nuclides in compartment i at
time f.

random variable representing the num-
ber of survived nuclides in compart-
ment 7 at time f, which were originally
in the system at time 0.

random variable representing the num-
ber of nuclides in state j at time ¢
which were in state i at time 0.
random variable representing the num-
ber of nuclides in compartment i at
time ¢, which have entered the system
during (0,1).

Greek Letters

left eigen vector of A corresponding to
the eigenvalues .

Kronecker delta function.

porosity of compartment i.

intensuty matrix.

radioactive decay constant.

transition intensity from state i to state
I

transition intensity of exit from
state/compartment ¢ at time ¢.

bulk density of compartment .
eigenvalue of A .

right eigen vector of A corresponding
to the eigenvalues .

feed rate of nuclides into compartment;

Appendix

Evaluation of P(t)

If the eigenvalues of A, #;, £, --

-, P, are real

and distinct, then A has eigen row matrix Q, each

column in which is the right eigenvector £, (as
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defined in Eq. (A2)) of A corresponding to the
eigenvalue £, and A has another eigen column
matrix Q 7, whose raws are the left eigenvector 5,
(as defined in Eq. (A3)) of A corresponding to
the eigenvalue #,,, the solution of Eq. (10) is [9]

P()=cA=Q E() Q" (A1)

The right eigenvectors, £, and left eigenvectors
B, are defined by following Egs. (A2) and (A3),
respectively :

A& =pip k=1, n (A2)
BIA = piBl, k=1, -, n (A3)
where
Q=& &-&) (Ag)
and
Bl

0|

B'r (A5)

n

which result the diagonal matrix whose elements

are the eigenvalues of A :

, 0

P2
Q'AQ -
0 P (A6)
and
ePt 0
emt
E()=exp(QAQ) =
0 1 a7)
If A has repeated eigenvalues, 2;, £, P,

with respective multiplicities »n,, n,, -+, n, such
that Z7=, n;=n, then it does not have x linearly
independent eigenvectors. In this case it is not
posiible to find Q and Q7!, which diagonalize A.

However, a form is possible which is almost di-
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agonal called the Jordan canonical form. In this
case, instead of eigenvectors, supplimentary vec-
tors, which are required to form a nonsingular
matrix: For example, suppose the eigenvalue, #;
has multiplicity #n,. Since there are no sufficient
eigenvectors to constitute Q, #,—1 more indepen-
dent vectors are required. The supplementary vec-
tors g; can be found with the only eigenvector, &,

initially as following procedure:

(A-pul) g =& (AB)
and

(A-p,,l)g,-: gni=2- el (A9)

And the transition probability for A having multi-
ple eigenvalues is

P (1)=Q Diag (E: () E2(1) -+ Eu()) Q" (A10)
where
Nl
e -l}—!eﬂ WW
E()= T et
0 e (Al11)
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