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Abstract

A computational program [TDET] of the particle transport equation is developed on
radiation shielding problem in two—dimensional cartesian geometry based on the discrete
elements method. Not like the ordinary discrete ordinates method, the quadrature set of angles
is not fixed but steered by the spatially dependent angular fluxes.

The angular dependence of the scattering source term in the particle transport equation is
described by series expansion in spherical harmonics, and the energy dependence of the
particles is considered as well.

Three different benchmark tests are made for verification of TDET : For the ray effect
analysis on a square absorber with a flat isotropic source, the results of TDET calculation are
quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray
effect more effectively than Sy calculation. In the analysis of the streaming leakage through a
narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming
leakage through the duct as well as MORSE-CG does, and quite better than Sy calculation. In
a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of
linearly anisotropic scattering with two groups of energy, TDET calculations show local ray
effect between neighboring meshes compared with Sy calculations in which the ray effect
extends broadly over several meshes.
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1. Introduction

Discrete ordinates method is an effective metho-
dology to solve the particle transport equation
numerically. It works with relatively few arithmetic
operations per space—angle grid point. There are,
however, some limitations to the method when
applied to the problems of optically thick regions,
of very little scattering media or of localized
sources. Anomalies in the scalar distribution, cal-
led ray effects, arise in such problems. These ray
effects are caused due to the limited number of
fixed angular quadratures in the discrete ordinates
method.

Mathews? introduced the discrete elements
method to ameliorate the ray effect in discrete
ordinates method. He devised the method with by
retaining the essential simplicity of the Sy algor-
ithm but replacing the fixed quadrature set of
angles with a “steered” ones. He showed that the
spatial differencing scheme using the steered angle
elements propagates the element fluxes in these
steered directions to strongly ameliorate the ray
effects. He tested the discrete elements method

Zrell ©|4| 8 Ray

for the problems of one—dimensional slab geomet-
ry and two-dimensional isotropic scattering
medium with a mono—energetic fixed flat source.

In this study, a computational program on radia-
tion shielding calculations is developed in X-Y
geometry based on Mathews’ theory but extended
to multigroup transport equations with anisotropic
scattering.

2. Discrete Elements Method

The angular discretization method®>

incorpo-
rated in most of the wellknown transport codes is
based upon the method of discrete ordinates. In
this method, a set of discrete directions, f),,,(m=
1,2,---,M), is chosen, and the transport equation is
evaluated for these directions with suitable averag-
ing processes. The choice of these ordinates is not
arbitrary but seeks to satisfy the following condi-
tions :
1) physical symmetries are preserved upon discre-
tization ;
2) the spherical harmonic moments are well
approximated to provide accurate representa-
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tion for the sources ; and

3) derivatives with respect to the angular coordin-
ates resulting from the streaming operator are
simply approximated.

In two or three dimension, not all of the above
conditions can be met exactly with a single selec-
tion of a discrete ordinates set. Thus compromises
are made, such as relaxing the complete symmet-
ry requirement so that more spherical harmonics
moments can be accurately calculated or the
angular derivative term remains a simple express-
ion with minimum coupling.

In the method of discrete ordinates, the angular
fluxes are evaluated at discrete directions },, hav-
ing components 4, 7, and &, ; #:+7:+&2
=1. Each discrete direction £,, can be visualized
as a point on the surface of a unit sphere with a
surface area, W,,. The W,, denote the weights.
Clearly, the sum of the weights must equal to the
surface area of the unit sphere.

Considerable works® have been devoted to de-
velop a suitable quadrature set for discrete ordin-
ates codes. Nevertheless, there are an essentially
invariant features in the discrete ordinates codes,
using quadrature set of fixed discrete directions,
although there are differences in treating the
angular variables within the framework of the dis-
crete ordinates method. In the discrete ordinates
approximation scheme the transport equation is
solved along a few discrete characteristics (i.e.,
rays). Alternatively, one can describe the discrete
ordinates method as a transformation of the rota-
tionally invariant transport equation to a finite set
of coupled (via scattering) transport equation that
are at most invariant under discrete ordinates. It is
expected that this loss of rotational invariance will
be mitigated, if the traveling directions of particles
are not fixed but steered somewhat to the direc-
tions of most probable streams of the particles. By
adopting this idea, the traveling direction of a
particle with energies E at location r is defined
as follows :

fD Qu(r, E Q)dQ

a, (1)

wa(r,E,mdQ

where D,, is the domain of angles of m—th dis-
crete element. Then, the direction {2, is not fixed
but steered by the spatially dependent angular
fluxes, which is expected to reduce the loss of
rotational invariance in original discrete ordinates
method. The domains D,, are like wedge or cone
which together form the unit sphere of solid angle
and are visualized as a partitioning of the surface
of a globe along lines of latitude and of longitude.

If we express the direction Q,, in polar
cosine—-azimuthal angle coordinates system (§, %),
where ¢ is the direction cosine of polar angle ¢
and ¥ is the azimuthal angle, and assume separa-
tion of variables in the coordinates so that ¢({)
is of form f{£)g(®) within each discrete element m,
the directional elements £, and ¥, of the direc-
tion 1, are expressed as a flux weighted mean in

each coordinate in which the integral is done in-

Fig. 1. Fixed Auxiliary Directions in a Typical Dis-

crete Element on the Unit Octant of a
Sphere for 3-point Gauss-Legender Quadr-
ature Rule.
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dependently. Then, the resulting equation is one
dimensional in a view point of angular variables.
This one—dimensional integral is approximated by
the quadrature rule. Three—point Gauss—Legendre
quadrature rule® is an effective choice. Employing
this quadrature rule, each flux—weighted mean is
approximated with a numerical integration form of
three points of fixed direction variables and the
angular fluxes in that directions. The fixed direc-
tions are associated with an offset factor bh of the
associated point interval in the quadrature rule.

Figure 1 shows a set of the fixed auxiliary direc-
tions in a typical discrete element domain for the
three—point Gauss quadrature rule, where it is fi-
gured on a unit octant of sphere. The numerical
integration forms of the steered angle elements
are as follows;

f(ES + bh) - f(Ef - bh) (@)

+ (bh) — - c
F(ES + bh) + 1.6f(€;) + f(E&; - bh)

[ ]
o 985+ b = gte - by ©
g(eS + bh) + 1.6g(9F) + g(ef - bh)
c_ ,_ 1y,2n _ (6)
= -~ -~y ’ = ’ 21 AR
oi = (- ) (Sh), (=1 L
- -
b=y08, h= L. (7)

In the above forms, fi¢f) and g(¥#) are the
auxiliary fluxes in the center directions of the solid
angle element f)m which have the domains of [5?(
-1/@K), &£+1/2K)] and [¥5-7/4L), P5+=
/(4L)], respectively, and the others are the fluxes
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in the directions apart from the center directions

by bh, where b is the associated point interval and

h is half of the discrete angular mesh.

With this scheme, the element weights are equal
for each k and I, and are given by,

W= 2, Hp = g ®)

In the discrete elements method, we can em-
ploy the same methodology of the spatial dif-
ferencing scheme that is used in the discrete
ordinates method. In this study, the diamond dif-
ference scheme is employed and the zero fix—up
strategy is used in case that negative fluxes occur.
The step difference scheme, the diamond differ-
ence scheme with no fix—up of negatives, and the
step characteristic scheme are also programmed
and tested in this study.

With original spatial differencing scheme used in
the discrete ordinates method, conservation of
particles is not assured in the discrete elements
method. Because the steered streaming directions
used in the discrete elements method are not fixed
throughout the spatial mesh cells, the continuity of
the currents is not assured across the cell inter-
faces. Conservation of particles in the discrete ele-
ments method is accomplished in two steps;

1) Within each space cell, the streaming angle for
each element is assumed to be constant. It
may have a different value after each iteration.
While the spatial differencing scheme is per-
formed, the flux—weighted streaming direction
is treated as fixed. This assures conservation of
particles within each space cell since explicitly
conservative spatial differencing scheme is
used as for discrete ordinates method.

2) The flux is discontinuous between neighboring
cells, since the streaming direction is discon-
tinuous across the cell interface. Then the con-
servation of particles across the cell interfaces
is not assured automatically. Conservation of
particles across cell interfaces is achieved by
using the normal current out of one cell as the
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normal current into the next cell.

The mathematical expressions assuring the parti-
cle conservation in the discrete elements method
are given as the following;

M
E Wm Bi,im w(i-l)ol,j,m,g
me1 2

M
= E Wo Bs 50 Vii2 jmo 9)

m=1 2

M
E Wo N3, 5-1.m Y5, (5-1)+2,m,q
m=1 2

M
= E W M5 5., wi,j-—;.m,sf (10)

m=1

In this notation, #;;,, is the x—direction cosine
and 7;;,, is the y—direction cosine of the discrete
angle element ﬁ,,,, and ¢;;,.. is the average
angular flux of the particles of discrete angle ele-
ment m with energies of group g in the space cell
(4,j), where subscript i,j represents the cell-cen-
tered point of the space cell (i,j), i—1/2,j (or
i,j—1/2) represents the cell left (or bottom) bound-
ary (i,f), (i—1)+1/2,j represents the cell right
boundary of (i—1,j) cell, and i,(j—1)+1/2 repre-
sents the cell top boundary of (i,j—1) cell of which
the spatial grids are I and J. W, represents the
weights which is defined by equation 8.

3. Source Term?

To extend the Mathews’ theory employed in the
discrete elements method to multigroup transport
equations with anisotropic scattering, it should be
known how the angular dependence of the source
terms is represented numerically in the transport
equations. Spherical harmonics series expansion is
an effective one which is commonly used in the
discrete ordinates method.

The source term includes, in general, sources

from an extraneous fixed source distributed

throughout the mesh, fission source, scattering in
source from other energy groups, and also scatter-
ing in source from other directions within the
same energy group. In principle, this can be ex-
pressed as ;

G o
Limg = Qijme ¥ Xg ,E VOrro ”; Wt Vi 5.m,g’
- 1

G M
YY) Wy Oy wtimghig Vidmg (11)

g1 mi=1

The first and least controversial simplification is
accomplished by grouping those space cells hav-
ing similar material composition into “material
zones” (indicated as z in above equation), and by
requiring that all cells within such zones have the
same cross—sections. In this study, all the cross-
—sections are simplified as “material zone-wise
cross sections”.

A less satisfactory approximation is made in fis-
sion source term. Since the fission reaction is nor-
mally treated as an isotropic process, it is possible
that the fission spectrum X is assumed to depend
only upon energy, and that ¥ and o, are treated
as a single unit ¥ o, which is function of space
and energy E. Thus, the fission term can be ex-

pressed as X Df; where:
G
Dfy ;=3 vor, 4 bisy (12)
g'-1
M
bigg = X Wt Visao (13)

m'=1

The spherical harmonics expansions are intro-
duced to represent the angular dependence of the
scattering source term. We now define a type of
spherical harmonic expansion in computational

form ;
Cfp, @) =

2041 (2-8,,) (e-k) 1|2
an (0+k) !

pK(p) cos (ke)(14)
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where 8y, is the “Kronecker delta”, and the P{#)
are the associated Legendre polynomials. With
these, the scattering source is approximated :

G

L ¢
Qsi'j.tn.g - E Z C'km E 05’2-9:9’ ‘ﬁi,j,g’ (15)

0 k=0 g1

4

¢f1-‘j'gl = E Wt C’k,,,l wi,j,m’,gl (16)

k

Cf = OB ) (17)

where 9/ , ... represents the material zone-wise

differential scattering cross section scattered from
energy group g’ into energy group g. If L, the
series truncation index, equals to zero, the scatter-
ing is isotropic. If the scattering is linearly varying
in # (linearly anisotropic scattering), then L=1.

In a manner similar to that used for the scatter-
ing source term, the extraneous (or fixed) source
term can be represented by a finite expansion
using the spherical harmonics, when the ex-
traneous source is inhomogeneous. In this study,
however, the extraneous source term is treated
simply as constants, which is true in case that the
extraneous source is distributed homogeneously.

4. Development of the Program

The algorithm of the discrete elements transport
program is based upon the same algorithm used
in discrete ordinates transport code system.

Since the source term in Sy involves an integral
over fluxes moving in other directions within the
same energy group, iterations over source term
must be used. The scattering integral is evaluated
based on prior information or guesses if available.
Once all of the fluxes for an energy group are
evaluated, a new scattering integral is evaluated,
and so on. This “inner” or “flux” iterations are
deemed to have converged when the fluxes from
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two or more successive iterations are sufficiently

close each other.

In Sy method, before going into the iteration
process, one fixed angular quadrature set is
selected. Then, the spatial differencing scheme is
performed. In the discrete elements program, the
process is somewhat different since the angular
quadrature set is not fixed but steered by the
angular fluxes. It is as follows :

1) A set of fixed auxiliary directions is deter-
mined in a discrete angle elements £, with
the equations {3) and (6).

2) Using the set of fixed auxiliary directions de-
termined in step 1, the spatial differencing
scheme is performed in a cell (i,j) to deter-
mine the angular fluxes in the directions of
the angle element in the cell.

3) The flux~weighted mean angles §,, and 9,
of the discrete angle element are determined
with any quadrature rule, such as three—point
Gauss Legendre quadrature rule [Equations
(2),(4), (5), and (7)], Gauss Christoffel quadra-
ture rule, etc. v

4) Using equation (14), the spherical harmonic
expansion functions Ci{/=0,1,2,---,L) are
calculated with the flux-weighted mean
angles of the discrete angle element deter-
mined in step 3.

5) Using the flux-weighted mean angles of the
discrete angle element, the spatial dif-
ferencing scheme is performed again in the
cell to determine the main angular flux ¢;; , ,
of energy group g.

6) Steps from 1 to 5 are repeated for another
discrete angle element till all of the main
angular fluxes ¢;;,, ,(m=1,2,---, M) are deter-
mined.

7) Using equation (16), the moments #f,; (/=
1,2,-+- 1) are calculated with all of the main
angular fluxes at the celt and with the spheric-
al harmonic expansion functions obtained in
step 4.
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8) Using equation (15), the scattering source (O,
ijmg at a discrete angle element is calculated
with the moments obtained in step 7 and with
the spherical harmonic expansion functions
obtained in step 4.

9) If there is a fission source, the fission source is

calculated by equations (12) and (13).

10) The total source S,; ;.  is calculated by equa-
tion (11). In this study, the fixed source has
given as input data.

11) The outgoing angular fluxes into next cell are
corrected with equations (9) and (10) to
assure the conservation of particles across the

cell interface. After this step, the normal cur-
rent out of one cell equals to the normal

current into next cell.
12
13

~—

Steps from 1 to 11 are repeated to next cell.

-~

If the steps from 1 to 12 described above are
finished for all of the space cells (i=1,2,-++,1; j
=],2,---,J) in one quadrant direction in the
X-Y geometry, steps from 1 to 12 are repe-
ated for another quadrantal direction till all of
the four directions of the hemisphere in the
geometry are executed.
14) Using equation (13}, the main scalar fluxes ¢
ij.g are calculated in all of the space cells.
15) The maximum flux deviation is investigated in
all of the space cells and is compared to the
convergence criterion of the inner iteration.
16) If the maximum flux deviation is smaller than
the convergence criterion, steps from 1 to 15
are repeated to another energy group till the
calculations are completed for all energy
groups. But if the maximum flux deviation is
greater than or equals to the convergence
criterion, steps from 1 to 15 are repeated with
the updated source term calculated in step
10.
17) The other processes are similar to those of
Sn.

5. Benchmark Calculation

A computational program of the multi-group
particle transport equation, which uses the Lahey
FORTRAN Compiler F77L-EM/32 Version 2.0
and the Lahey LINK-EM/32 Extended Memory
Linker in PC-386(33MHz)} with Intel 387 Math
Co—Processor, is developed on radiation shielding
problem in two—dimensional cartesian geometry
using the discrete elements method. The angular
dependence of the scattering source term is consi-
dered in the program as expanding the source
term with the spherical harmonics expansion
series functions.

It is tested in three different cases of the ben-
chmark problems on radiation shielding.

5.1. Problem 1997

We consider a well-known problem of a flat
isotropic source in a square absorber (C=2/3).
This problem was introduced initially by Lathrop

to analyze the ray effects of the discrete ordinates
transport, and has been dealt repeatedly in many

papers for the purpose.

The spatial region was subdivided into 30 by 30
equally spaced mesh intervals Ax=Ay=2/30. The
diamond difference scheme with zero fixup
strategy in case that negative flux occurs is em-
ployed as spatial differencing scheme, in which
3—-point Gauss Legendre quadrature rule with 3
elements in polar quadrant (K3) and 4 elements in
azimuthal quadrant (L4) is used to determine the
flux—weighted mean angles.

To assure the reliability of the calculation, it is
compared with the calculation of MORSE-CG®,
a Monte—Carlo transport code, and DOT 4.3, a
well-known discrete orinates code. Figure 2 rep-
resents the cell-averaged scalar fluxes calculated
from TDET along the uppermost raw of the
cells (Y=1.967 cm) in a 30 by 30 spatial meshes
which are compared with those obtained from the

calculations of MORSE-CG and DOT 4.3.
The results of TDET are quite well conformed
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Fig. 2. Comparison of TDET Results with
MORSE-CG and DOT 4.3 Results in a
Square Absorber with Flat [sotropic Sour-
ce(c=2/3)

to those of MORSE-CG. The results of DOT 4.3,
however, show a little differences from those of
MORSE-CG or TDET. These are due to the loss
of rotational invariance of fixed angular quadra-
ture. Comparing the results of TDET with those of
DOT 4.3, it may be concluded that the discrete
elements method with K-3, L-4 (96 angle ele-
ments in a sphere) ameliorate the ray effect more
efficiently than the discrete ordinates method with
S5-10 (140 discrete angles in a sphere).

5.2. Probiem 2V

We consider a useful test case of a streaming
duct in a shield, which is one of common shield-
ing design problem. This problem consists of a
thin source region along the bottom of a shield
with a vacuum boundary and a centered narrow
vacuum duct that nearly penetrates the shield re-

J. Korean Nuclear Society, Vol. 25, No. 1, March 1993

gion. This particular problem was selected as an
idealized representation of an access port in a
fusion reactor design. The cross-sections and
source specifications for the problem 1 and 2 are
given in Table 1.

Table 1. Cross Sections and Sources for

Benchmark Problems

+1  Problem I *2
problem 1™ el Duct
o,(cm™) 0.25 0.75 0.0
vo, 0.0 00 0.0
o, 0.75 1.0 0.1e—05
o, 0.50 0.25 0.1e-05
S(n/em®) 1.0 20

*1 Flat isotropic source in a square absorber
*2 Narrow vacuum duct in a square shield
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It is expected that the major leakage of the
scalar flux out of the shield is due to the streaming
of particles through the duct. Figure 3 shows the
results of calculations with TDET(K-3, L-4), DOT

4.3 (S-10), and MORSE-CG.
We can find that there are considerable differ-

ences in the leakage of the scalar fluxes between
TDET or MORSE-CG calculations and DOT 4.3
calculation, at the shield top through the vacuum
duct with the width of the duct, 0.5 cm. It can
hardly find the leakages through the narrow duct
with the results of DOT 4.3 calculation. On the
contrary, the leakage is conspicuous and remark-
able in the results of TDET and MORSE-CG.
There are sizable differences between TDET re-
sults and MORSE-CG results in the vacuum duct
region, but the differences are negligible compar-
ing to those of DOT 4.3. The differences between
TDET calculation and DOT 4.3 calculation dimin-
ish as the width expands, and results of the cal-
culations approach to those of MORSE-CG cal-
culation. Figure 4 shows that the results of TDET
well agree with those of MORSE-CG, when the
width is 1.0 cm which is twice of the previous
case, and the results of DOT 4.3 close similarly to
those of MORSE-CG and of TDET.

The bad resolution of the Sy program in narrow
vacuum duct is due to the loss of rotational in-
variance of the fixed angular quadrature described
previously. With a few set of fixed directions, it is
impossible to resolve the rapid changes of the
particles streaming in such region like narrow
vacuum duct. The fluxes diminish in the center of
the duct in the results of TDET, like as in DOT
43. It may come from the loss of rotational in-
variance of the angular quadrature of the discrete
elements method, although it is not so severe as
in the discrete ordinates method. Then we con-
clude that TDET program analyze the transport of
the particles in complicated geometry such as
duct, high absorber, etc. better than Sy program.
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Fig. 4. Comparison of TDET Results with
MORSE-CG and DOT 4.3 Results in a
Streaming Analysis in a Vacuum Duct-
(duct width=1.0cm)

5. 3. Problem 3?

We consider a benchmark problem issued in
ANL-7416 for the purpose of testing the multi—g-
roup two dimensional transport problems in X-Y
geometry. The problem represents a realistic reac-
tor shielding situation with a two—dimensional iso-
lated source in an absorbing medium. The prob-
lem is treated in two cases : isotropic scattering
and linearly anisotropic scattering. The reflective
boundary conditions are employed to three sur-
faces and the vacuum boundary condition to the
remaining one surface. The problem geometry de-
scribed in the right comer of the figures from 5 to
8 shows the boundary conditions. The cross—sec-
tions and source specifications for the problem are

given in Table 2 and 3.
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Table 2. Cross Sections and Sources for
Benchmark Problem Situation ID.5-A1l

(Isotropic Scattering Assumed)

Isotropic (cm™)
Group 1 Group 2
o, 0.061723 0.096027
va, 0.0 0.0
a, 0.092104 0.100877
O0e: g 0.006947 0.004850
004 1.4 0.023434
Source Density (n/cm3)
| 0006546 | 0.017701

Table 3. Cross Sections and Sources for
Benchmark Problem Situation ID.5-A2
(Linearly Anisotropic Scattering

Assumed)
Isotropic (cm™?)

Group 1 Group 2
a, 0.061723 0.096027
Vo, 0.0 0.0
o, 0.101080 0.108529
%0q: g 0.015923 0.012502
0051, 4 0.023434

Linear Anisotrpic (em™})

Cig:q 0.008976 0.003914
1o 1. 0.009016
Source Density (n/cm®)

| 0006546 | o0.017701

Twenty equally spaced intervals were used be-
tween X=0.0 and 65.0, with 21 equally spaced
intervals between X=65.0 and 133.0. In the Y
direction, 18 equally spaced intervals were used
between 0.0 and 60.0, with 24 between Y=60.0
and 140.0. The diamond difference scheme with
zero fix—up and the K-3, L—4 discrete angle ele-
ments were used, with a global error of 107 for

the convergence criterion.
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Which Two Group Isotropic Scattering is
Assumed.(group 2, y=139.2cm)
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Figures 5 and 6 show the results of TDET cal-
culations with the benchmark problem solution ID.
5-A1-3. The benchmark probiem solution is
calculated by H. Greenspan and E.M Gelbard with
the mathematical model of the discrete ordinates
transport using S-8 order of the symmetric set of
directions and weights, the diamond difference
mode! for the spatial differencing scheme, 81 by
84 mesh intervals, and 107 for the convergence
criterion. The distribution of the fluxes at the up-
permost edge (y=139.2 cm) of the medium by
the discrete elements transport program shows
finely fluctuated phenomena in group one of the
particle energy, as well as in group two. The phe-
nomena of the fluctuation may be reduced in
fine—mesh calculation such as for the benchmark
calculation. We can find that the ray—effect of the
discrete elements transport program presents im-
minently but finely between the neighboring
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meshes, although not so severe as that of the
discrete ordinates method in which it extends
broadly over several meshes. Such ray effect in
discrete elements transport program may come
from the algorithm of the particle conservation
between cell interfaces such as : the different angle
quadratures between neighboring meshes induce
to correct the outgoing angular fluxes of previous
cell calculation to maintain the balance equation
between the cell interfaces, so the differences of
scalar fluxes which are the summation of the
angular fluxes for all of the angular quadratures of
the unit sphere are present between neighboring
meshes, especially in deep medium in which parti-
cles travel several mean free paths. In a small
medium like as problem 1 of this paper, these
phenomena do not occur. The ray effects occur
broadly between several meshes, on the contrary,
in the discrete ordinates method. These are due to
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the loss of rotational invariance of the fixed angu-
lar quadrature.

The averaged distribution curve of the pene-
trated scalar fluxes of the discrete elements cal-
culation are fairly good agreement with, somewhat
better than in accuracy, that of the Sy calculation.

In linearly anisotropic scattering problem, which
is shown in Figures 7 and 8, such local ray—effect
between neighboring meshes also exist, as hap-
pens to the isotropic scattering problem calculated
by discrete elements transport program, and the
penetrated scalar fluxes are comparatively well
consistent with the benchmark values of Sy.

6. Conclusions

In ray effect analysis on a square absorber with
a flat isotropic source, the results of TDET calcula-
tion with K-3, L-4 which has 48 discrete ele-
ments in unit hemisphere are quite well con-
formed to those of MORSE-CG and ameliorate
the ray effect efficiently compared to those of
DOT 4.3 calculation with S—10 symmetry angular
quadrature which has 70 directions. TDET prog-
ram analyzes quite well the streaming leakages
through the narrow vacuum duct in a shield.
Comparing to DOT 4.3, TDET shows remarkable
simulation results on that problem as well as
MORSE-CG does. In the huge shielding problem
such as reactor shielding, TDET shows local ray
effect between neighboring meshes which is diffe-
rent to the benchmark solution with Sy method.
This ray effect is understandable because there is
a step of correcting the angular fluxes across the
cell interface between each neighboring two cells
to balance the current term.

We conclude that TDET program is reliable
sufficiently to analyze the multi-group particle
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transport equation on shielding problem by using
the steered angular quadratures which are weight-
ed by the spatially dependent angular fluxes and
considering the anisotropic scattering phenomena
of the particle streaming in X-Y geometry. It
shows that the ray effect of the discrete ordinates
program diminishes remarkably in discrete ele-
ments transport program, and TDET gives fairly

good results in accuracy.
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