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Abstract

The Galerkin formulation of the finite element method is applied to the integral law of the
first-order form of the one—group neutron transport equation in one—dimensional spherical
geometry. Piecewise linear or quadratic L.agrange polynomials are utilized in the integral law
for the angular flux to establish a set of linear algebraic equations.

Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere
as well as for the criticality problem in a uniform sphere. For the criticality problems in the
uniform sphere, the results of the finite element method, with the use of continuous finite
elements in space and angle, are compared with the exact solutions. In the heterogeneous
problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite
elements is in good agreement with that from the ANISN code calculation.
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1. Introduction

The finite element method in both space and
angle to the even—parity second—order form of the
neutron transport equation has been studied to
solve neutronics problems numerically.**% Pitksr-
anta and Silvennoinen'” applied the finite ele-
ment method to a general multigroup formalism in
spherical geometry. Miller et al.? utilized piece-
wise bilinear or trilinear polynomials in an even
—parity functional for the angular flux to establish
linear simultaneous sets of algebraic equations.
They also demonstrated that the finite element
method to problems with anisotropic scattering
and material interfaces is applicable. The applica-
tion of the finite element method to the various
neutron transport problems, where standard dis-
crete ordinates method does not applicable, has
been succer.tul. Miller et al.® demonstrated the
disappearance of ray effects, appearing in the pre-
sence of highly absorbing media, in finite element
calculations, and the convenience of treating hex-
agonal geometries and curved boundaries through
the use of triangular elements. Ukai and Martin
and Duderstadt®™ have also investigated the feasi-
bility of applying the finite element method direct-
ly to the first-order form (non-self-adjoint) of the
neutron transport equation. The theoretical basis
of the method has been examined by Ukai when
it is applied in space and angle to the genernal
transport equation with vacuum boundary condi-
tion. Martin and Duderstadt examined in detail the
application of the finite element method and
obtained successful numerical resu-ts for the one
—dimensional plane geometry application.

The finite element method is to divide the do-
main under consideration into small elements and
the solution is approximated by piecewise polyno-

mials. The expansion coefficients are determined ‘

by applying the Galerkin scheme. In the present
study, criticality calculations in a uniform sphere

are performed by the finite element method com-

J. Korean Nuclear Society, Vol. 24, No. 3, September 1992

bined with finite elements that are continuous in
space—angle phase space. Since most practical
problems involve spatially strong heterogeneities,
the suitability of the finite element method for
describing neutron transport in a heterogeneous
system is also examined and the result is com-
pared with that from the discrete ordinates
method. For such applications, it is essential to
utilize finite elements that are discontinuous in
both space and angle. In particular, the use of
discontinuous angular elements at #=0 is intro-
duced and the utilization of discontinuous spatial
finite elements is developed for the heterogeneous
spherical geometry.

2. Integral Law Formulation in Spherical
Geometry

Consider the steady state monoenergetic neut-
ron transport equation for a homogeneous sphere
on the interval 0<r<R shown in Fig. 1 as
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= [Jarnewomers) + Sau (1)
where the streaming operator is expressed in con-
servation form®. In Eq.(1) all notations are stan-
dard, and the following specified incoming bound-
ary condition can be imposed :

P(R.u) = @R.u) . pu<0 .

To develop the integral law formulation of the
neutron transport equation, Eq.(1) is multiplied by
an arbitrary function ¢(r,#) €Hg, where Hg is
energy or Sobolev space®>”), and integrated over
the (r—#) phase:
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Fig. 1. Physical and Analytical Domains for One-
—Dimensional Spherical Geometry Applica-
tion

Integrating the streaming terms, the first and
second terms on the left-hand side of Eq.(2), by
parts to produce boundary terms, we have
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We can identify the boundary terms in the above
equation, the last two terms on the right-hand
side of Eq.(3), where the former is known incom-
ing term and the latter is unknown outgoing term.
Now the boundary condition at =R, #,(R, #) for
# <0, can be substituted into Eq.(3). Therefore,
Eq.(2) can be rewritten as

R .l dv R +1 v
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If a solution ?(r, #)e Hg to Eq.(4) is sought, and
Eq.(4) is required to be valid for all ¢(r, #) € HE,
the integral law corresponding to Eq.(1) is
obtained :

Find #(r, ) eHg
to Eq.(4) for all $(r, Y€ Hg.

The integral law is now in a form that is amen-
able to approximation by way of the finite ele-
ment method. That is, rather than attempting to
find a solution ?(r, #) of Eq.(4) in the space of HE,
we seek the solution in a finite element subspace
SP'CHg. More specifically, we will seek a solution
e, 1) S" such that Eq.(4) is satisfied for all ¢"
{r, )cSP. Here, h is a parameter that depends
on the mesh spacing to be used in the approxi-
mate solution ; SP is a specially constructed sub-

space with basis functions

view.i=12,., N,

where N is the dimension of S", typically the
number of nodes in the mesh. Thus, the integral
law, Eq.(4) is replaced by an approximate integral

law :

Find #"(r, #)€S" such that for all ¢")r, #)eSh

Ro2f" h ay" R + e oyt
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Since S" is finite in dimension and #"(r,4)SP, ¢P

can be expanded as
N
) = Y vl .
J=l1

where ¢,=expansion coefficients,

¢P=basis functions.
If we substitute this expansion into Eq.(5) and re-
quire £q.{5) to hold for all ¢lr,#), i=1,2,...N to
ensure that Eq.(5) is valid for all ¢"(r, )€SP, we
obtain the matrix equation,

A$ =5,
where
¢ = coNg.ty..b)
5 = colS,,5....5,)
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Finally we get a system of algebraic equations
for the expansion coefficient #;, which can be
easily evaluated by standard numerical methods.

3. Choice of Finite Elements
In genernal the finite element method is em-

ployed in a nodal fashion. That is, the expansion
coefficients for the solution are nodal parameters
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that are typically the value of the solution or one
of its derivatives at a node of the space angle
mesh.?”

In this study Lagrange interpolation polynomials
are introduced over each local mesh or finite ele-
ment. Linear or quadratic Lagrange polynomials
are used as the basis functions in r and # separ-
ately. Since the transport equation is only of first
order, one can expect continuity of the angular
flux at most. Therefore the use of Lagrangian ele-
ments that preserve confinuity in the solution but
not its derivatives would appear to be a proper
choice for transport problems.®’ Lagrangian ele-
ments are formulated for multi~dimensional ele-
ments in terms of direct products of two or more
one—dimensional Lagrangian basis functions.

The one~dimensional basis functions can be ex-
pressed as the standard tent functions” that are
linear Lagrange polynomials as shown in Fig. 2.
Higher order basis functions can also be defined
over a general element as a direct product of hig-
her order one—dimensional polynomials. To con-
struct higher order elements, additional nodes are
introduced and the higher order polynomials are
defined over several nodes. This results in a cou-

pling of nodes that would not be coupled by
1 1

v (r) Vm(#)

i 1
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Fig. 2. Tent Finite Element Basis Functions
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Fig. 3. Quadratic Lagrange Basis Functions
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linear elements. This is not a concern with the
angular elements because all nodes are coupled
by scattering in any event. Fig. 3 illustrates a

17 on a typical

quadratic Lagrange polynomia
mesh interval and also indicates how discon-
tinuous elements (in r and/or #) are formulated

by adding an additional principal node.
3.1. Discontinuous Angular Finite Elements

In curved geometry it is well known that the
angular flux may be continuous as a function of
the direction #, and there is no discontinuity for
#=0. Although the angular flux is continuous at
#=0, its derivative with respect to # will be
discontinuous and the flux may change rapidly
with # near #=0. Moreover, such discontinuities
in the angular derivative are present at points out-
side the material interface and for directions hav-
ing #>0.® In order to consider such behavior in
the angular flux with respect to #, we can employ
discontinuous angular finite elements.

The use of discontinuous angular finite elements
is simply a matter of constructing basis functions,
that are discontinuous at #=0, being careful to
evaluate the integral in a piecewise fashion. This is
easily accomplished by splitting the basis function
at #=0 into two basis functions, one for #=0"
and the other #=0%. Thus there is a double
node at #=0, as illustrated in Fig. 4 for a typical
finite element mesh. Therefore the approximate
solution is allowed to be discontinuous at #=0.

Since there exists the angular derivative in the
transport term 3(1-#99/rd # in Eq.(1), integra-
tion must be performed carefully. The integration
across the discontinuity will yield angular interface
term which must be carefully incorporated into the
integral law.

Let us consider in detail the angular redistribu-
tion term 9(1-#%)¥/rd# sine no other terms are
affected except for the spatial derivative in the
transport term # 9r2¢/r29r, which is treated separ-

He=+1

Hs

He=l ole
Hy3=0

Ha

== =
f, Sl TSTe T =R

+ Discontinuous Angular Elements at y =0
—-l—— Discontinuous Spatial Elements at r =1

Fig. 4. Mesh Structure for Discontinuous Finite Ele-
ments

ately in Sec. llI-2. As with the derivation of the
original integral law, Eq.(4), it is multiplied by an
arbitrary trial function ¢(r,#) and integrate over
the phase space, taking care to split up the integ-
ral to avoid the discontinuity in ¢(r, #) at #=0:

[ [ v Zla-ubee )

= = Raecf™ dy(r.u)
- Io d"[-ld“(l_#z)?(r'“)_iy_
R
+ [ arfew0) v o) - etr0%)ye.0n) (6)

The first term on the right side of Eq.(6) is identic-
al to the original formulation and will not be mod-
ified, and the second term is angular interface
term which is treated carefully.

As mentioned earlier, the angular flux may
change rapidly with # near #=0 for directions
having #>0 at points outside the interface of
material discontinuity. So this phenomenon can
be viewed as the angular flux with respect to #
may vary abruptly at #=0" near material inter-
face. Since the angular flux is analytically con-
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tinuous in spite of the strong angular variations,
the angular interface continuity condition is there-

fore assumed as
Pr,0t)=9(,07).

Thus the remaining angular interface term (Al) can

be written as

Al = J:drup(r‘()_)[v(r.ﬂ’) - ve.0Y)

This term is additive to the integral law, Eq.(4),
and results in the following matrix element :

Al = [faryieo|vie.o) - vhao)] .

which is additive to the matrix element Ay
3.2. Discontinuous Spatial Finite Elements

Although analytically the solution to the trans-
port equation must be everywhere continuous in
the spatial domain, there may be points at which
the solution exhibits a near discontinuity. For ex-
ample, the simple problem of a strong source of
neutrons in a strong absorber surrounded by a
vacuum will result in an angular flux with nearly
discontinuous spatial dependence at the vacuum
boundaries.””” However it -is difficult for the
approximate solution to follow this discontinuous
behavior because it is constrained to be con-
tinuous by the choice of the approximating sub-
space (Lagrange basis functions).

In order to allow the treatment of strong spatial
variations in the flux, one can proceed as with the
angular variable and simply construct discon-
tinuous basis functions at the desired spatial posi-
tions, thus allowing the approximate solution to be
discontinuous. However the presence of the spa-
tial derivative in the transport term #3r?®/r2or
necessitates care when the transport equation is
integrated over the spatial domain.

Let us consider a method for handling spatial
discontinuity within the framework of the finite
element scheme. We muiltiply spatial derivative
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term by an arbitrary function ¢{r, #) and integrate
the result over the phase space, allowing a discon-
tinuity in the flux at r=rp:

I’ (r.u)
Jr

Joef duwermm
R +1 dy(r,n) +1
= - fat[ e Rl + B[ dupoRpuwR )

o [ [ oty w0 - i 0 W 0] - (7)

Here we note that the right-hand side of Eq.(7} is
identical to the original formulation except for the
last term, which is defined as spatial interface term
(SI). The next step is to use known information to
reduce the Sl term in a manner similar to the
reduction of the boundary term by explicitly sub-
stituting the known boundary condition. Since the
only known condition at an interface is that the
solution ¢ (r, #) at rp is continuous, albeit strongly
varying, let us use this condition in the direction of

particle motion :

P, .0 = o) . p>0
oy 1) = Qi) . p<0,
we can get

st= [0 dppeteg ) v a0 - 12w

+ I;‘dﬂnw(r,,..n)[r,f. Wi, - 12w, )

This term is also additive to the integral law,
Eq.(4), and results in the following matrix element:

sty = [0 aunwd w2 vl - 2w )]

+ I:d##v?(r,,..ﬂ_)[rg. W) - 2 v )

which is additive to the matrix element A;. Note
that like an angular interface continuity condition

_ this spatial interface continuity condition is in-

cluded within the system of equations as a natural
interface condition rather than the one imposed
directly by the choice of the approximating sub-
space.

4. Numerical Results

The finite element methods discussed in the
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preceding sections are applied to several typical
problems in nuclear reactor analysis. The results of

the two of these applications are presented next.

4.1. Critical Sphere Problem with Isotropic
Scattering

The first application of our method is made to
the classical eigenvalue problem of neutron trans-
port theory—the calculation of the number of
secondary neutrons, c, required per collision to
achieve criticality in a sphere of given radius mea-
sured in mean free paths (mfp). The specific
eigenvalue equation to be solved is

2 2
%3' ‘s(r"“) + :a(l '3:’("“) s o = 2 [ awowmy

with boundary condition
e(R.p) = 0, pu<0 ,

where R is the radius in mfp. Application of the
finite element approximation developed in Sec. Il
results in the following generalized matrix eigenva-
lue problem.

A¢ = oMy, 8
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where M is the scattering matrix and A is the
same as the matrix of coefficients given previously
except that M has been substracted. Eq.(8) is
solved using an power iteration method based on
the Gaussian elimination algorithm and backsolv-
ing for each iteration until two successive values
for ¢ agreed to a desired precision.

All runs are performed with single precision
(32-bit) arithmetic and the convergence criterion
of the eigenvalue is chosen to be 1078, which is
approaching the smallest round—off error realisti-
cally obtainable with single precision arithmetic.

Four different size of spheres are analyzed with
various order of finite elements and mesh spac-
ings. Continuous finite elements in space and
angle are used for all runs, and uniform spatial
and angular meshes are used. Table 1 summarizes
the results for the four spheres and includes ben-
chmark eigenvalues reported by Kaper et al.,"? for
the different size of spheres.

As is seen in Table 1, the accuracy of the eigen-
value decreases as the number of meshes in-
creases. The reason for this is that the size of
matrix A in Eq.(8) becomes larger as the number

Table 1. Number of Secondary Neutrons per Collison for Criticality in Spherical Geometry with

Isotropic Scattering

Radius Benchmark® b b
(mfp) Ref. 9) LL°2, 2) LL@4, 4) LL(6, 6) QQ°4, 4) QQ(8, 8
2.0 1.395872 1.394893 1.398715 1.398943 1.402499 1.404664
{0.070%)° (0.204%) {0.220%) (0.475%) (0.630%)
4.0 1.138460 1.138878 1.139633 1.139718 1.141127 1.141887
(0.037%) {0.103%) (0.111%) (0.234%) {0.301%)
10.0 1.028149 1.028297 1.028423 1.028443 1.028737 1.028830
(0.014%) (0.027%) (0.029%) (0.057%) (0.066%)
20.0 1.007628 1.007737 1.007750 1.007754 1.007796 1.007756
(0.011%) (0.012%) (0.013) (0.017%) (0.013%)

20riginal results have been rounded off to seven significant figures
b =linear, Q = quadratic ; spatial element first; number of mesh intervals in each direction with

spatial mesh first

‘Relative errors in percent
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Table 2. Scalar Flux Results in a Critical Sphere for Radius R=10.0 mfp

Position Benchmark® b Y
(mfp) (Ref. 9) LL>a, 4) LL(8, 8) QQ°4, 4 QQ(8, 8)
0.0 1.0° 1.0 1.0 1.0 1.0
25 0.91245 0.90324 0.90875 0.93057 0.92874
(1.01%)¢ (0.40%) (1.99%) (1.79%)
5.0 0.67710 0.66800 0.67227 0.67983 0.68527
(1.34%) (0.71%) (0.40%) (1.21%)
7.5 0.36565 0.35212 0.36161 0.35990 0.36797
(3.70%) (1.11%) (1.57%) (0.64%)
10.0 0.05570 0.05576 0.05783 0.06072 0.06121
(0.11%) (3.85%) (9.01%) (9.90%)

*Original results have been rounded off to six significant figures

®Same notation as Table 1

“All center fluxes are normalized to unity

“Relative errors in percent
of meshes increases, hence the spatial accuracy
using finer mesh seems to be decreased by the
accumulation of round—off error resulted from the
significantly increased number of operations dur-
ing the Gaussian elimination. Another point is that
the results using the quadratic elements are poorer
than those of the linear elements. This is because
the matrix A in Eq.(8) is a banded matrix. The use
of quadratic elements for the basis functions re-
sults in a coupling of nodes that would not be
coupled by linear elements. Therefore the band-
width of the matrix A by using the quadratic ele-
ments is wider than that by the linear elements. In
the Gaussian elimination process, the number of
multiplication and divisional operations of a wide
bandwidth matrix is obviously more than that of a
narrow bandwidth matrix, hence round-off error
becomes larger in a wide bandwidth matrix.

Table 2 contains the nodal scalar fluxes cormres-
ponding to the eigenfunctions for the sphere of
radius 10.0 mfp. The results are tabulated for va-
rious mesh spacings and finite elements. Again,
these scalar flux values are compared with the
benchmark values from Ref. 9. On the basis of the
eigenvalue results, less accurate results are

obtained for the scalar flux. However, the com-
parison should somewhat inexact due to the nor-
malization used (flux at center of sphere=1.0) to
compare with the benchmark results.

4.2. Multi-Region Problem with Strong Heter-
ogeneities

The finite element method is applied to a mul-
ti-region problem with strong material discon-
tinuities and source discontinuities as shown in
Fig. 5. In this problem, discontinuous linear finite
elements are utilized in both space and angle.

The spatial region is subdivided into 40 equally
spaced mesh intervals and has one additional
node at each material interfaces. The angular do-
main consists of a uniform mesh of 4 intervals and
has one additional node at #=0. Therefore the
simultaneous set of linear algebraic equations
which has 44 X6 unknowns are set up. Hence the
system of equations can be solved directly by the
use of the Gaussian eliminaton technique.

The scalar flux distribution of the above calcula-
tion is shown in Fig. 6 compared with that
obtained from the one-dimensional discrete ordin-
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Fig. 5. Physical Configuration for Multi-Region
Problem

5.00

4.00

3.00

SCALAR FLUX (#/cm’-sec)

1.00

Error Norm = (L0135

i 1 1 ]

1 1 1

0.00
000 100 200 300 400 500 600 7.00 KO0

DISTANCE (cm)

Fig. 6. Comparison of Results from ANISN Code
and FEM for Cell Centered Scalar Fluxes
for Multi-Region Problem Described in Fig.
5

ates code, ANISN!?, In ANISN calculation 40
equally spaced mesh intervals and 9 angular direc-

tions are used. To quantify the discrepancy be-
tween the result of the finite element method and
that of the ANISN code calculation in the heter-
ogeneous problem, we introduce the following
error norm defined by

e o)

i HANISN

Il = Lio= L2l

Here, @SN js the ANISN solution, while @ is
the calculated cell centered scalar flux.

5. Conclusions

Based on the results, the following conclusions
can be made concerning the application of the
finite element method to the numerical solutions
of the one—dimensional transport equation in a
spherical geometry.

1) For criticality calculations, the results of the
finite element method by using the linear finite
elements are better than those obtained by the
quadratic finite elements.

2) The finite element method is capable of treat-
ing problems with strong material discon-
tinuities when discontinuous angular and spa-
tial elements are used.

3) The main difficulty in handling the finite ele-
ment method is to store the coefficient matrix
and to solve the corresponding set of equa-
tions directly, at least for the first—order
approach. For large problems, especially multi-
—dimensional applications, the storage require-
ment can be an obstacle to many computing
installations.

In summary, the finite element method can be
considered as a viable and competitive metod for
solving the one—dimensional transport equation in
spherical geometry when it is applied to the fir-
st—order form of the transport equation using the
Galerkin principle.
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