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Abstract

This paper considered the out-of-plane motion of the piping system conveying fluid
through the elbow connecting two straight pipes. The extended Hamilton’s principle is used to
derive equations of motion. It is found that dynamic instability does not exist for the clam-
ped—clamped, clamped—pinned and pinned-pinned boundary conditions. The frequency
equations for each boundary conditions are solved numerically to find the natural frequen-
cies. The effects of fluid velocity and Coriolis force on the natural frequencies of piping system
are investigated. It is shown that buckling—type instability may occur at certain critical velocities
and fluid pressures. Equivalent critical velocity, which is defined as a function of flow velocity
and fluid pressure, are calculated for various boundary conditions.
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1. Introduction

The dynamics and stability of pipes conveying
fluid have been studied extensively over the past
40 years, because of its growing importance in
aerospace and nuclear fields. The research on the
flow—-induced vibration of a straight pipe was ori-
ginated from the vibration analysis of the Trans-
—Arabian pipeline by Ashley and Haviland[1].
Housner{2] studied the same problem by using
Hamilton’s principle. For a simply—supported
straight pipe, he found that the pipe may buckle,
like a column subject to axial loading, at critical
flow velocity. Benjamin[3] considered the effect
of fluid flow on the motion of pipes, divided into
a series of articulated straight rigid pipes. He
observed that the motion of the pipe is indepen-
dent of fluid friction, theoretically and ex-
perimentally. Gregory and Paidoussis [4,5] studied
the oscillations of a cantilevered straight pipe to
support Benjamin’s result mathematically. Also
they showed that flutter may occur for a certain
flow velocity.

For a curved pipe, Unny, Martin and Dubey [6]

f
Z ,w1 /l'\

derived cguations of motion and showed the rela-
tion between pipe angle and critical velocity for
buckling. Chen[7], however, verified that their
equations of motion have mistakes. And he de-
rived the equations of motion for in—plane and
out—of-plane motion of uniformly curved pipe us-
ing Hamilton’s principle. Also he investigatied the
relation between the frequency and fluid velocity
and between the critical velocity and pipe angle.
Hill and Davis[8] found that there was no initial
tension force for Chen’s equations and no buck-
ling phenomena for some pipe shape by FEM
using Galerkin's method.

In this paper, an angled pipe, composed of two
straight pipes connected by an elbow, is consi-
dered. The force caused by momentum change at
the elbow is considered as a follower force and
the extended Hamilton’s principle is used for the
derivation of equation of motion. For the out—of-
—plane motion, the relations between natural fre-
quency and flow velocty and also between the
change of critical velocity and Coriolis force are
investigated. Also it is shown that the initial force
in static equilibrium have to be included in the
equations of motion.

Fig.1 Definition of Coordinates.
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2, Equations of Motion

The angled piping system considered herein
consists of two pipes connected by an elbow to
form angle 4 as shown in Fig.1. The pipes have
intemal cross sectional area A,, mass per unit
length m,,, flexible rigidity EI, torsional rigidity GJ,
lengths ¢, and £,. my is the fluid mass per unit
length and ¢ is the constant fluid velocity between
two points 1 and 2.

In the derivation of equations of motion, follow-
ing assumptions are applied: (1) The effects of
gravity and material damping are negligible, (2)
the effects of rotatory inertia and shear force are
negligible, (3) the pressure drop is negligible, and
(4) all motions are small.

The extended Hamilton’s principle provides the
equations of motion as well as the boundary con-
ditions, which is given in the form of

(28T, = 8V, + Wit W

3
+ 0Wg+ 8 (3, A,g)] dt=0 ey

where T, and V,, are the kinetic and potential
energies associated with pipe, dW;, & W, and
J W are the virtual works by fluid acceleration,
fluid pressure and the force caused by momentum
change in elbow, respectively. g; represent the
constraint conditions for geometrical continuity of
two pipes and A; corresponding Largrange’s mul-
tipliers.

Pipe deformations consist of transverse displace-
ments wy, w, and torsional displacements ¢, and
# 2. lhen kinetic and strain energies of pipe are
given as follows :

0T, = 8é1 S:k % lmp [%]2
(e @

2 lad
+%J [g%k“]zjdxk 3)
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where dJ, is the torsional moment of inertia of
pipe. The fluid may be accelerated by the pipe
deformation. The accelerated fluid may cause
force on the pipe in tum. The virtual work done
on a pipe by the accelerated fluid[3, 8] is given
by

2 0y 82Wk
OWr=m El , ]" [ o — (=1
Pwy |, Wi
2ot ]} Swy dxe  (4)

The fluid pressure also can deform pipe. Hence,
the virtual work by fluid pressure is represented by

2 axﬁ )
SWore=—%, | PA =7 dwi du, 5)

The fluid momentum change at the elbow may

induce a force on the pipe[9]. The virtual work
by the force is expressed as follows :

2 o) azwk
SWr=R3 [(1+cos ) [ |’ S O dsy

AWy ek owy !

— +

oo )+ D ow ] @

where, R=my?+pA. The constraint conditions for

the point 3 in Fig. 1 are as follows:

a=w; ’tx— W2 J

i2
_ Wz , co )
3= ,81 % ezsmﬂ $, ezcosﬂ (7)
_ W1 w2 r t .
@= o 107 ax lzcos(i + ¢, tzsmﬁ

By substituting Egs. (2)~(7) into Eq.(1) and by
eliminating Lagrange’s multipliers, we obtain
dynamic equations of motion and bounary condi-

tions. They are concisely,

34W1 2 82W1
—7 —(me?+ —
El ? (mgc®+pA)cos £ -

fome TM (mj+my) AR
ox ot oty
GJ % —do %:0 8-b)
El a;:;-z — (mge?+pAjcos § a_;_(\&é_zn
—2me % + (my+my) a:::z -0 (8=
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Table 1. Boundary Conditions
Boundary clamped—clamped clamped-pinned pinned—pinned
=0 w;=0 w=0 w;=0 wi=0 w;=0 w{=0
! $,=0 $,=0 $,=0
=0 wy=0 wy=0 wo=0 wy=0 w,=0 wy=0
? $,=0 $,=0 $,=0
$,=wssinf + $, cos
wy=wy sin § — $, cos 8
X = 14 1 W) =Wy
and Elw,+GJd¢; sin 8 +Elw{" cos § =0
Xo= {5 Elwy —(mc? +pA)ws cos §
+Elw;—(m«?+ pA)w; cos § =0
GJd#,+GJ$, cos § —Elw{ sin § =0
2 2 = W
2 ¢z 8 d oWy 2 2 w1
—a—d, 5 = —F — + P 8 —5
Gd P4 Jo pw 0 (8-d) R (C )e$ cos X
with boundary conditions summarized in table 1. +o7HCe ¥, ol Wy
1 = 1 z =
The second terms of Egs. (8-a) and (8—c) show X197 ot
that pipes may experience compression force 82¢1 koe? a4 -0 (10
when elbow angle @ is obtuse and tension force %% 1o
i le, the axial force o'w o’
when acute. In case of right angle _42 _ 2+ P)e% c0sf _:23
vanishes. Accordingly, instability phenomena may Xz x5
2— 2
occur for the case of obtuse angle. —27*Ced I Wa + et TWy =0
2 aiza T 2 atz

To nondimensionalize the dynamic equations of
motion and boundary conditions, we introduce
following nondimensional terms.

Wi fi_g

G "y %

X _ El

3 . =12 — 2
ﬁ,' XJ‘ () » )1 3 ( p+mf) t/L
=M~ M

y mp+m;’ c (EI) Le, ®
_pA , _H

f=a b k=g

s 1 _ 4

- mp+m, L2’ €= _[: (€1+€2=1)

By use of Egs.(9) into Egs.(8), we obtain non-
dimensional dynamic equations of motion in forms
of

Nondimensional boundary conditions are shown
in Table 2.

3. Free Vibration

We assume the solutions of Eqs.(10) as the
forms of
%%, T)=F (% )" —
it X —J X (11)
(%, T)=F(%)e"

where i=+/~1. ] is the nondimensional frequen-
cy defined by Q=4+/{m,+m)/El L? w. Substitu-
tion of Egs.(11) into Egs.(10) vields
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Table 2. Nondimensionl Boundary Conditions.

Boundary clamped—clamped clamped-pinned pinned—pinned
=0 V—il=0 wi=0 \'Zl==0 wi=0 w,=0 wW/=0
#=0 $,= $,=0
%,=0 ‘Tiz=0 wy=0 \32:0 wg=0 W,=0  w=0
%=0 $,=0 $,=0
$,=Wysind + 8, cos §
at W{=w, cos 6 — P sin @
= { eWy=eyWy
and ke, Ws+e, #{sin 8 +ke, W{ cos§ =0
Xo= {3 e? Wy—e? e} C2+ P) cos§ Wy
+e3 Wy —~e? e3(C?+ P) cos§ W{=0
e1$5+ep $1 cos f —ek Wi sin§ =0
d“\m

—ov ¥ | L+ 0w

1
—(C2+ P)ef cosd &=

~(C2+P)ed cosf QT ;

5 0y
+2ir* Ce} E—e $02%,=0 (12-a)

& 2 2 T ll
&zl + QK28e2P =0 (12-b) +(C2+ P)ef cosf QW] |
1

e, 2 ¢4 roirtcannvy, ||

- V0 1 1*1
&2 {C%+ P)e cosd ) 10

d\I/ —(C2 2 a2 ;12

-2iQrt Cezd,i — S PW,=0 (12— (C2+P)é cosd(0-0) | | ¥ P,
d%e ra_m 12
d)_(%z +Qak28€2¢2 0 (12—d) (Q Q) ‘0 ‘ R 21 ' dxy

£ may be real, pure imaginary or complex -efqa(Q- Q)S | ¥ [Pdx,= (13

number depending on system characteristics. The Similary, for Eq.(12-b), (1 9-¢) and Eq. (12d), we

buckling-type instability may occur when  is
obtain

zero. The system is dynamically stable when the

imaginary part of complex {1 is positive, but unst- — 1 T
ginary p P P 0.9 lo - 09,9 o

able when negative.

Let 0 and ¥ be the complex conjugates of 0
and ¥. After multiplying @, ¥ to Eq. (12-a) and
2, ¥ to the complex conjugate of Eq.(12-a).

_— 1 ,
+(Q-0) | | P
+koezafi(Q-0) | | ¢ Pdg=0  (14)
substract two equations and integrate the resulting L 1 = 1
equation by parts with respect to X, Xz over the Oy so—n\l’é\y§ *o

interval (0, 1) to obtain —QuTy

1 I_ ’” 1
o T AT |

R I | 4‘1,,,‘1 o
Qv o—Q\I,1 1o —(C?+ P)eb cos b Qs o
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+(C2+P)ed cos8 OV ‘;

+2i7 ¥ Ce3 0OV, ‘;

—(C2+ P)ed cosd (2-0) 3; | ¥ Pdx,
~0-0) |, | ¥ Pdx,

~e$00(0-0) |, | % Pdx,=0 (15)

QP95

1 — |1

0_Q¢2¢2 0
= 1

+HQ-0) | | #;12d%

+koe3Q(Q-0) | | #, Pdx,=0  (16)

By adding Eqgs.(14) and (16), substracting Egs.(13)
and (15), and by substituting boundary conditions
of Table 2, we obtain

(- ||, 197 Pdx, +(C?+ #)
e cosd 3; ¥y Pdx; + S:) | [Pdx,
+et 1l | 1% Pdx,
+koed 1P| | ¢ Pax;
+ |1 195 dx, + (C2+ P)
¢ cosd |, 1% P + |, | 95 P,
+eb 1R 1% Pd%,

+ ko3 | Q1| |9, Pd%g| =0 17)

One note that Eq.(17) is always satisfied if Q=
0, which implies Q is real. Thus, the dynamic
instability does not occur when the boundary con-
ditions in table 2 are satisfied. This result is iden-
tical to the results by Paidoussis[12] and Chen|[7]
We concluded that dynamic instability does not
exist for the conservative system with the clam-

ped—clamped, clamped-pinned or pinned-pinned
boundaries. Now, the solutions of Eqs.(12) are
assumed as follows :

4 I
Wy (xy)= §1An e
#1(%)=ZEq n" (18)
V(%)= £ B, evu

2

Po(Ro)= EIE,, n irzX

where A,, E,, B, F, are the constants to be
determinded from boundary conditions, and s;,,
Son, T1n, Ton are the roots of characteristic equations

given by
s+ (C2+P)ed cos b s
—2qr* Cels; - e?0?=0,
£ — Pk 8e5=0, (19)
s34+ (C?+ P)ed cosb <5
—20r* Ceds, — e302=0,
%— Pk 8 e3=0

By substituting Eqs.(18) into the boundary condi-
tions in table 2, the homogeneous equations are
derived as the form of

(an] 1A}=10}. n=1,2,,10 (20)

where {A| =[Ay, Ay, A3, Aq, Eq, By, By, Bs, By,
F.]7. The determinant of matrix [a,,] must be
zero for the existence of nontrivial solution | A}

That is,
det[a;,] =0 (21)

When the pipe is made of a homogenous material
and has circular cross—section, k and & become

El E
k=—=—=1+ v

GJ 2G 22)
S=21(1-7)

where v is the Poisson’s ratio and # =I1/A; L2
From Eq.(21), the frequency equation is obtained
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in the form of
F(nvyycvpy 0; XJ, /u’e])=0 (23)

Solving Eq.(23), the change of nondimensional
natural frequency with respect to flow velocity is
shown in Figs.2~4 when Poisson’s ratio ¥ =0.3,
length ratio e;=0.5, angle # =120°, pressure
ratio © =0. The natural frequencies obtained from
Eq.(23) are real for the boundary conditions speci-
fied in Table 2. The natural frequency decreases
as the flow speed increases. And, when the flow
velocity reaches a critical velocity, the natural fre-
quency become zero to cause buckling-type insta-
bility. From Figs.2~4. we find that the first natural
frequency decreases and the other frequency in-
creases as the mass ratio increases. As the flow
velocity increase, the difference of natural fre-

2nd mode

60
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30

Dimensionless Frequency, Q

Ist mode

r
!
r
1

20 =

2 3 4
Dimensionless Flow Velocity

5 6 7 8 9 10

Fig.2. Natural Frequencies of Clamped-
Clamped Pipe(§ =120°, ¢;=05, ¢ =0,
v =03, #=14X107%).
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Fig.3 Natural Frequencies of Clamped-Pinned
Pipe(d =120°, e;,=05, £ =0, =03, #
=14X1079).

quencies for different mass ratio becomes remark-
able. However, with further increase in flow velo-
city, the natural frequencies for different value of
vanish at the same value of flow velocity, which
phenomena can be explained that the Coriolis
force does not affect the stability of pipe. Also, the
Coriolis effect is negligible when mass ratio is
small.

4. Critical Velocity

The buckling-type instability boundary can be
obtained by natural frequency Q=0 in Egs.(11).
To find the effects of a flow speed and pressure
on buckling phenomena, we delete the
time~dependent terms in Eqs.(10). Then we
obtain
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d2¢1
d_T% =0 (24)

d4\If2 d? Wy

— —(C?+P)ef cosf —— =0,
& ( Jes cos di%

The solutions of Eq.(24) are assumed as
W¥;(X1)=D;+Dsx;+Dssin @ X;+Djycos a x4
P1(x1)=M; +Mox;

W,(Xz)=H; +Hyx,+Hjsin 8 X3+ Hycos £ %,

Pl %) =Ny +Noxo (25)
where

a =V, e;s/—cosf,

B =V,q exs/—cos 8 . (26)

The constants of Egs.(25) are determined from
boundary conditions. To observe both effects of
flow speed and pressure on static instability, the
equivalent critical velocity Vg is defined as

Vea=v 2+ p

By substituting Eq.(25) into boundary conditions

(26)

in table 2, we obtain six homgeneous equations in

Table 3. Equivalent Critical Velocities of a Clamped—Clamped Pipe.

0.5 0.3

angle 1st 2nd 1st 2nd
180° 6.2832 8.9869 6.2832 8.9868
170° 6.2961 9.0600 6.3261 8.9806
160° 6.2311 9.2877 6.4576 8.9646
150° 6.1875 9.6977 6.6868 8.9652
140° 6.1824 10.3471 7.0306 9.0678
130° 6.2918 11.3499 7.5249 9.4394
120° 6.6401 12.9507 8.2748 10.3395
110° 7.4963 15.7884 9.6246 12.2727
100° 9.8807 22.3959 12.9686 17.1282
95° 13.5511 31.8170 17.9539 241975

90° oo o0 [ee] [o'e]
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Table 4. Equivalent Critical Velocities of a Clamped-Pinned Pipe.

€ 0.5 0.3

angle 1st 2nd 1st 2nd
180° 44934 7.7253 4.4934 7.7253
170° 4.5002 7,7529 45314 7.7412
160° 45219 7.8402 4.6496 7.7856
150° 4.5648 8.0070 4.8626 7.8557
140° 4.6496 8.3056 5.2005 7.9734
130° 4.8095 8.8407 5.7229 8.2202
120° 5.1392 9.8079 6.5577 8.7669
110° 5.8456 11.6678 8.0377 9.9911
100° 7.7315 16.2064 114771 13.2914
95° 10.6103 21.8048 16.3665 18.3154

90° o oo o e}

Table 5. Equivalent Critical Velocities of a Pinned—Pinned Pipe.
e 0.5 0.3

anglo e 1st 2nd 1st 2nd
180° 3.1416 6.2832 3.1416 6.2832
170° 3.1345 6.3352 3.1452 6.2883
160° 3.1151 6.4973 3.1557 6.3111
150° 3.0892 6.7891 3.1734 6.3776
140° 3.0699 7.2514 3.2027 6.5400
130° 3.0806 7.9654 3.2597 6.8855
120° 3.1656 9.1052 3.3867 7.5661
110° 44276 11.1250 3.6980 8.9331
100° 42627 15.8231 4.6404 12.3425
95° 5.6426 225134 6.1816 17.3372

90° o] o] oo 00

a matrix form as
[bjn] l E ! = { 0 t (j,n=1,2,3,4,5,6) (28)

For nontrivial solution of |Bi, determinant of
[bj,] must be zero. Here the function of the
equivalent critical velocity is

G(V.q €1, 8)=0 29

The equivalent critical velocities V.q, for length
ratio ¢;=0.5 and 0.3 were shown in tables 3~5
for various elbow angles 6. From tables 3~5,
V,q for 8 =180° is identical to the results by

Paidoussis and Issid[12] and to the critical load of
buckled beam. Generally, the V., increase as
angle decrease and reach infinite value when
angle is 90°

5. Conclusion

In the present study, the out—of-plane motion
of a angled pipe is investigated to find the follow-
ing results :

1. For clamped — clamped, clamped — pinned,
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1.

pinned — pinned boundary conditions, the
natural frequency of the system is always real,
which implies that dynamic instability does not

Ooccur.

. Buckling—type instabilty does not occur for the

acute angled piping system because it is sub-
ject to tension force. For the obtuse angled
piping system, however, buckling—type instabil-
ity can occur because it is now subject to com-

pression force.

. The obtuse angle piping system buckle at a

certain critical flow velocity. Their natural fre-
quency decrease as the flow velocity increase.
The Coriolis force does not affect the stability.
When mass ratio is small, the Coriolis effect is
negligible.

Initial tension force must be included in the
theoretical analysis.
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