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Abstract

This study concems with comparing low—dimensional reactor kinetics methods with a
three—dimensional kinetics method to be used for safety analysis of light water reactors in
order to suggest means of preparing input parameters required for low—dimensional methods.
For this purpose a one-dimensional finite difference two—group diffusion theory code
ODTRAN and a third—order Hermite polynomial-based point kinetics code POTRAN are
developed and used to obtain low—dimensional solutions to the LRA-BWR kinetics ben-
chmark problem. The results are compared with a three—dimensional modified Borresen’s
coarse—mesh solution of the kinetics problem by CMSNACK code. Through this comparison
some simple but practical means of preparing input parameters of low—dimensional kinetics
analysis methods are suggested.
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1. Introduction

In the safety analysis of a certain light water
reactor transients, modelling of the transient neut-
ronic behavior by a three—dimensional(3-D) neut-
ron kinetics equation is highly desirable for a satis-
factory prediction of the transient results(1-3).
Since heavy computational burden is generally in-
volved in solving neutron kinetics equation in
three dimension, low—dimensional methods such
as point kinetics scheme and
one—dimensional{1-D) group diffusion theory
method are frequently adopted for modelling the
neutronic behavior during the transient(4, 5).

From the computational standpoint, these low-
—dimensional methods are extremely efficient and
therefore very useful for transient analysis, yet
care must be exercised in preparing input para-
meters required for the methods in order to en-
sure computational accuracy of the transient
analysis within acceptable degree(6). The purpose
of this study is to examine predictability of low-
—dimensional kinetics methods in a light water
reactor transient analysis in comparison with a re-
ference 3-D kinetics method and thereby to sug-
gest means to prepare input parameters required
for low—dimensional methods to obtain acceptable
computational accuracy.

For this purpose the LRA-BWR kinetics ben-
chmark problem, which simulates a superprompt
critical transient induced by a sudden withdrawal of
control rod, is chosen(7). In order to obtain low-
—dimensional solutions to the LRA-BWR problem,
ODTRAN code based on a finite difference solu-
tion of 1-D two group diffusion equation and
POTRAN code based on a third-order Hermite

polynomial solution of point kinetics equation are
developed(8). The low~dimensional solutions of

. the LRA-BWR problem by the 1-D ODTRAN and

the POTRAN code are compared with a 3-D re-
ference solution by CMSNACK code which is
based on a modified Borresen’s coarse—mesh
method(9). It is shown that low—dimensional
methods can predict overall behavior of the
LRA-BWR during the transient period in a fairly
similar way as the 3-D method does and that
computational accuracy depends on how to pre-
pare the input parameters required for the
methods.

2. Description of Neutron Kinetics Methods

In this section the modified Borresen’s 3-D
method and the low—dimensional methods are
briefly described in order to show interrelationship
between the 3-D solution and low—dimensional
kinetics solutions.

2.1 The Modified Borresen’s Coarse Mesh

Scheme

This is one of the simplest coarse-mesh
methods and is designed to obtain two-group flux
#g(r, ) ([g=f, t or 1,2) on the 1.5 group principle.
The equations to be solved in this scheme are
finite difference nodal balance relations for the fast
group diffusion density,

¢ m(n)=~/ Dfm ¢ (n)ﬁ‘l”
-3 </’J(“)+R2 ¢j(n)+Qm(n)¢m(n)

h2
= 0 S (1)
(1~cm ")/ D =™
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The ¢, is the fast group diffusion density at
the center of the 3-D rectangular node m and at
the time step n. The ¢, and Ca™ are the
nodal volume-averaged fast group diffusion densi-

(2e)

/ Dy
% Dy, 2d

ty and the dth group delayed neutron precursor
density for node m at the time step n. The other
notations are the same as thoes in the original
reference(9).

The source term of Eq.(1) contains nodal
volume-averaged thermal group flux at the node
m and time step tn, # ™. In the modified Bor-
resen’s method, this is approximated by an inter-
polation formular :

8 imlt) =bem(t) # em(t) +

(42j $i)+RE $30, (1), 3

in combination with an analytical expression for
thermal group flux at the intemodal surface,

D, t DyKilt

_;'PE_"'.(_) é ‘,,,(t)+—"m 4 q-(t)

- T )
== Kat) | DyKit)

mbBm(t) gh(t

T T T @

where
Ko)=(Z )+ )/ D, (5a)
Ty =tanh(K(th/ 2), (5b)

The modified Borresen’s scheme described in
the above is incorporated into the 3-D neutron
kinetics analysis code, CMSNACK, against which
low-dimensional methods are tested.

2.2 The 1-D Two—Group Diffusion Equation

Considering that kinetics equations for thermal
hydraulic feedback variables are also to be in-
cluded in computation of the reactor transient
problem, modelling of the transient neutronic be-
havior in three dimension is very costly in compu-
ter time. The 1-D method offers an improvement
in computing cost. The equations to be solved in
1-D two—group model are

1 2¢:t) 23 D 2 #4128
v at ' az"! oz
_2a1¢1(zvt)
1-48
+ k (v 2ﬂ¢1(z, ty+v 2{2¢2(Z, 1))
+§ A4C4lz, 1), (6a)
1 9ésat) _ 8D8¢2
Vo ot 9z 2 9z
—232¢2(Z )+ 2,¢1(2, 1), (6b)
Cqylz, t
B _ iy s 4y
+ U Zpdolz, )— A4Cylz, ) (6¢)
d=1, 2, 3,---, D

These equations can be obtained by integrating
two group diffusion equations in three dimension
over the radial plane perpendicular to the axial
direction z. The integration process then leads to
the 1-D two—group parameters related to the 3-D
group flux, #4(x,y,2), by

I S.xy,2) ¢4%y,2) dxdy

2= {1 $glxy2) dxdy (7a)

and
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H(-Dg—a—ng' Dy ) dxdy.
i1 84xy,ztdxdy
(7b)

There are various approaches of solving Eq.(6)
numerically. In this study a fine—mesh finite differ-
ence scheme is adopted to produce a 1-D two—
group finite~difference diffusion theory kinetics
code, ODTRAN, which is a acronym of One
Dimensional Transient Neutronics code.

2.3 Point Kinetics Method

The point kinetics method offers the simplest
kinetics model for reactor transient analysis. As in
the case of the 1-D ODTRAN method, the
method can be derived from two~group diffusion
equation in three dimension by representing two
group flux #4(r, t) as a product of a shape func-
tion Sgfr, t) and an amplitude function Nit), i.e.,

# 4r, )=S(r, N(t) @)

Substitution of Eq.(8} into two-group diffusion
equation and a series of mathematical manipula-
tion lead to the point kinetics equation :

L — AN+ E2 G0, (9a)

90 g o 2.0 (9b)
where

ar="9LY po=3 p0,

BO=5, =123, D (10)

where the point kinetics parameters are given by
1
PO=Gg | VI-M+F,+Fy] [Sr, 0], (11a)
1
A(t)=—§(;)“ § dV[wlr, 917 [v] 1 [Sa.9], {(11b)

dJ. Korean Nuclear Society, Vol. 22, No. 4, December 1990

pl=gi ) VTR (S 0], (110

where
Glt)= § dViwlr, )] T[F,+Fa) [S, 0],  (12a)

— M, 8] =C7 ‘D, v—-E, .0 )

S, V- -D,v—32, (12b)
[Fl=v(1—-8) pZs v3p
(o0 o ), (12¢)
[Fd= BvZq BvZp
("o "o ) (12d)
[V]—1= (1/v1 1 )
0 1/v/ (12¢)

[wir,] 7= [wqfr,t), walr, 87 w,
=weighting functions

For numerical solution of the point kinetics
equation, we adopted a third—order Hermite
polynomial method(8). The polynomial solution
method for point kinetics equation is then in-
corpoated into the kinetics code POTRAN, which
stands for Point kinetics—based Transient Neutro-
nics code.

3. Numerical Results and Discussions

For the purpose of comparing computational
accuracy of the 1-D two—group diffusion theory
method and the point kinetics method with the
reference CMSNACK 3-D kinetics method, the
ODTRAN and POTRAN codes are used for
obtaining the low—dimensional transient solutions
to the LRA-BWR kinetics benchmark problem.

The LRA-BWR problem corresponds to a simu-
lated superprompt critical transient induced by
sudden withdrawal of a controlrod. Fig. 1 shows the
horizontal and vertical sections of the LRA-BWR.
The reactor core consists of four different fuel
types. The transient is induced by complete ejec-
tion of a control rod in region “R” in 2 seconds.
Table 1 lists a set of input data required for tran-
sient computations.
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It is straightforward procedure to perform the
3-D CMSNACK reference computation for the
LRA-BWR problem using the data in Table 1, Yet
it is necessary to reduce the input data to the form
suitable for the ODTRAN and POTRAN computa-
tions in order to obtain the low—dimensional solu-
tions. Presented in the following are procedures
for the input prepation of the ODTRAN and POT-
RAN codes and the LRA-BWR solutions by these
codes in comparison with the reference 3-D
CMSNACK resuit.
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Fig.1. LRA-BWR (A) Horizontal Section (B) Vertic-
al Section

3.1 The 1-D ODTRAN Computation

The fundamental unknowns of the ODTRAN

Table 1 (A) Two~Group Constants

D p v b
Region Material Group, g (cm) ( cm—a'l) ( cm_{) {cmz 1y
1 Fuel 1 1 1.255 0.008252 0.004602 0.02533
with
Rod 2 0211 0.1003 . 0.1092
2 Fuel 1 1 1.268 0.007181 0.004609 0.02767
without
Rod 2 10,1902 _0.07047 0.08675
3 Fucl 2 1 1.259 0.008002 0.004663 0.02617
with
rod 2 _0.2091 0.08344 01021
4 Fuel 2 1 1.259 0.008002 0.004663 0.02617
without
rod -2 0.2091 0073324 0.1021
5 reflector 1 1.257 0.0006034 0.0 0.04754
2 0,1592 001911 0.0
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Table 1(B}
Delayed Neutron Model
group B; Ajfsec™ )
1 0.0054 0.0654
2 0.001087 1.35

Adiabatic Feedback Model
aT

T

S al)= 2,10 [1+ a 5T —300%)]

«,=3.83X107" Kem®
@,=3.3034X10"3 K2

Energy Conversion
initial power density=10"° W/cc
power= € { Veorg SiddV
€ =3.204X10 ! W—sec/fission

code are the node—average group flux defined by

1 &
$ml)=""| 4z 1) dz.
hn Zn—1
The subscript n denotes the axial 1-D node with

the width of h,. Input data required for computing
the #g,(t) are the two—group constants and the
transverse buckling for each of 1-D nodes. In
principle these can be computed using Eq.(7) in
combination with a time—dependent 3-D flux. In
practice, however, approximate schemes are in-
evitable since the time—dependent 3-D flux are a
priori unknown.

One simple but straightforward method is to
make use of steady state 3—D fluxes instead of the
time-dependent flux. In this conjunction the
steady state fluxes of interest are those for the
core with all rods in, ¢*®(x,y,z) and those for the
core with all rods out, #/f° (x,y,2), which corres-
pond to the initial and the final state of the
LRA-BWR transient problem. Let's take the # !
for instance. This flux can lead to the 1-D diffu-
sion equation parameters by EQ.(7):

ARI ’S v dXdVExg(X,V,Z) ¢ ARl(x,y,Z)
Zogn = § dxdy ¢ *(x,y,2) (14

Needless to say, the # *FO(x,y,2) can result in the
SA4RO In the course of the LRA-BWR transient,
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the control rod may be located somewhere within
the 1-D computational node n. Taking into
account this situation, the node—dependent 1-D
cross section may be approximated by

S g =(1—HZ g FO+{3 N (15a)

The “f” stands for the fraction of the control rod
insertion into the node n. The transverse buckling
may also be similarly approximated by

DB%pun=(1—1) (DB%,,)"*°

+(DB%, )\ (15b)

Table 2 shows the node-dependent two—group
parameters derived from Eq.(14). The 3-D fluxes
are obtained from the CMSNACK computions for
the ARO and the ARI core with rectangular node
of 15X15X30 cm?®, which correspond to 10 axial
nodes. It is noted that the two group parameters
except for the top and the bottom nodes are
almost the same irrespective of the nodes. This is
due to the fact that either the ARO core or the
ARI core has uniform material properties, which in
turn suggests that 2-D fluxes can also be used for
computing the =,,#F° and =, AR Table 3 shows
1-D two group parameters derived from 2-D flux
at ARI and ARO. It must be observed that there is
little or no difference in numerical values of two
group parameters of tables 2 and 3.

Two group parameters from Eq.(15) in com-
bination with the data in Table 1 are put into the
ODTRAN code for a 1-D solution to the
LRA-BWR benchmark problem. Shown in Table
4 is comparison of a 3-D CMSNACK computation
and 1-D ODTRAN solutions for the LRA-BWR
problem. Fig. 2 also compares two computations
in terms of transient core power density as funtion
of time. As may be noted from these comparison,
the 1-D ODTRAN computations predict the tran-
sient behaviour of the LRA-BWR in a fairly simi-
lar way as the 3-D CMSNACK computation, even
though the former predict the timing of the first
power peak a little bit earlier than the latter, and
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Table 2(A) Homogenized 1D Cross Section with All Rods IN

365

n Dy Siag Vi Z. Dliq2
1 .1259E+01 9225E—02 .4629E —02 1269E—02
.2055E+00 .8527E—01 .1010E+00 .2610E-01 —.8038E-03
2 .1259E+01 9225E—02 .4629E—02 .1269E—02
.2055E+00 .8527E—-01 .1010E+00 .2610E—01 —.8038E-03
3 1259E+01 9225E—02 4629E—02 1269E—02
.2055E+00 .8527E—01 .1010E+00 2610E-01 —.8038E-03
4 .1259E+01 9225E—02 .4629E—~02 1269E—-02
2055E+00 .8527E—01 .1010E+00 .2610E-01 —.8038E-03
5 1259E+01 9225E—-02 {4629E—02 1269E—02
.2055E+00 8527E—01 .1010E+00 .2610E-01 —.8038E-03
6 .1259E+01 .9225E —02 4629E—02 .1269E—02
2055E+00 .8527E—-01 .1010E+00 2610E-01 —.8038E-03
7 .1259E+01 9225E—02 .4629E—~02 .1269E—02
.2055E+00 .8527E—01 .1010E+00 .2610E—-01 —.8038E-03
8 J1259E+01 9225E—02 .4629E—02 1269E—02
.2055E+00 .8527E—01 .1010E+Q0 2610E~01 —.8038E-03
9 .1259E+01 \9225E—02 .4629E —02 .1269E—02
.2055E+00 .8527E-01 .1010E+00 2610E-01 —.8038E-03
10 J1259E+01 9225E—-02 .4629E —02 1269E—-02
2055E+0Q0 8527E—01 1010E+00 2610E—01 — . 8038E-03

Table 2(B) Homogenized 1D Cross Section All Rods OUT

D, 2 ag = 5, DBQ2
1 .1259E+01 9715E—02 .4635E—02 1791E—-02
.2053E4+00 .8133E—-01 ..1003E—00 .2620E-01 —.1079E—-02
2 .1259E+01 9715E—02 .4635E—02 .1791E-02
.2053E+00 .8133E—01 .1003E—00 .2620E—01 —.1079E—02
3 1259E+01 9715E-02 .4635E—02 1791E—-02
.2053E+00 .8133E—-01 .1003E—00 2620E-01 —.1079E—-02
4 1259E+01 9715E—-02 4635E—02 .1791E—-02
.2053E+00 .8133E-01 .1003E—00 .2620E-01 —.1079E—-02
5 J1259E+01 9715E—-02 .4635E—02 J1791E-02
.2053E+00 8133E—-01 .1003E—00 .2620E—01 —.1079E—-02
6 1259E+01 9715E—-02 .4635E—02 1791E—-02
2053E+00 .8133E—01 .1003E—00 .2620E—01 ~.1079E—-02
7 1259E+01 9715E-02 4635E—02 1791E—-02
2053E+00 8133E—-01 .1003E—00 .2620E—-01 —.1079E—-02
8 1259E+01 9715E—02 4635E—02 .1791E—-02
2053E+00 .8133E-01 .J003E—00 2620E—01 —.1079E—-02
9 .1259E+01 9715E—02 .4635E—02 .1791E-02
.2053E+00 .8133E—-01 .1003E—00 2620E—01 —.1079E—-02
10 1259E+01 9715E—02 .4635E—02 1791E-02
2053E+00 8133E-01 1003E—00  2620E—Q1  —.1079E—02

Table 3(A). Homogenized 1D Cross Section with 2D Computation at ARI

n D, 3 g VS o DBE2
1 1259E+01 9238E—-02 4629E—02 .1279E—02
2056E+00  8533E—01 _JO11E400 2609E—01 —.8196E—03
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Table 3(B). Homogenized 1D Cross Section with 2D Calculation at ARO

wer_density (w/cc)

9190 w/cc at C.815 sec.

===~ ODTRAN
= CMSNACK

'R | s 1 A 2
1.0 2.0
time (seconds )

ig.2. Comparision of 1-D ODTRAN and 3-D
CMSNACK Results for Transient Power De-
nsity

werestimate the power densities at 3 seconds af-
er transient in comparison with the latter. It may
ilso be noted that the reduction of the 1-D nodal
vidth from 3 ¢cm to 1 cm brings about little or no
hange in the computational results of the 1-D
ODTRAN code. From the standpoint of comput-
ng time the 1-D ODTRAN code is extremely
efficient. It should be observed that the 1-D

n D, S g V34 s, DB
1 1259E+01 9723E—-02 4635E—02 1797E—-02
2054F+00  8144E—01  1QO4E+00  2619E—01  —1096E—02 |

ODTRAN code takes about 10 to 30 times less
computing time than the 3-D CMSNACK code to
solve the LRA-BWR problem.

3.2 The POTRAN Computation

The basic input parameters of the POTRAN
code are the kinetics parameters 2 (t), 8 (t) and A
(). Enumeration of these parameters by Egs.(11)
requires a prior knowledge on the weighting func-
tion Walr, ) as well as the shape function Sg(r,t).
Since these functions are unknown a priori,
approximate schemes are inevitable. The simplest
of all approximations on the shape functions is so
called the adiabatic approximation in which the
shape function is assumed to be independent of
time.

Taking Wg(r,t)=1 and Sglr, )=Sgflr, t)=Sgl(r, 0)
under this approximation, the point kinetics para-
meters are computed by

1
PO=—GF ]S Selt 09405 0V

~3 19 - Dy7 #4fr, 00V, (16a)
M= | T, Zislr 9V, (16b)
Biv= 8, {16c)

(16d)

Glt)=|§ 3) v Zg 8 olr, O)dV.
The Sgfr, 0) is related to the time-independent
flux ¢4(r, 0) by

# ofr, 0)=S,(r, O)N(0) (N(0)=1).

Table 5 lists the numerical values of the point
kinetics parameters by assuming Sg(r, 0)= ¢ 4(r,
0), which is the initial steady state flux of the
LRA-BWR with all rods in. Eq.(16) defining the
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Table 4. Comaparison of 1-D ODTRAN Computation with 3-D CMSNACK Results

367

Methods CMSNACK ODTRAN
K for initial state 997393 997761 997765 997747
time to first peak(sec) .855 .815 .815 .815
power at first peaki{w/cc) 9195 9157 9190 9234
control rod position from
bottom of core{cm) 1275 122.3 122.3 122.3
time to second peak 1.443 1.461 1.454 1.419
power at second peak 458 501.4 501.2 500.1
control rod position from
bottom of core{cm) 2165 219.1 2181 219
power at 3 seconds 74.2 915 91.8 92.2
CPU time(sec) 5201 151 217 402
MV-8000
Table 5. Point Kinetics Parameters by Adiabatic where
Approximation _t 1
771(t): }L_te[l _1;_],
Parameter Numerical values At 5
P 1= P4t P o) = £ (0 =t 1ol
Aft) 2.926X107° sec At 5 B
Bt £,=0,0054 8,=0.001087 1-1 141
0 t<”‘5—, t>—5—.

reactivity £ (t) can be rearranged in the following
form :

1
P=1- [ | 55 ZdedS

1
+5@ | veZalt) #1660V

1
+ 5 ! Vg S azlt) 2lr, 0)dV]. -

The P4(t), Py(t), and P5(t) in table 5 stand for
three terms in the bracket in Eq.(17) in order.
These three terms correspond to the loss of reac-
tivity due to net leakage of neutrons, fast absorp-
tions and thermal absorptions, respectively. Com-
putation under the adiabatic approximation leads

to
P 4(t)=,003355, (18a)

Polt)= PH0)[1+ a (TH—To?)],

PO =G5 1 v Zm(O) 1, O)AV
=0.2485, {18b)

Pslt)= 1§12=0 P23 74), (18c)

It is noted that the 2 seconds of the rod with-
drawal period is divided into 10 equal intervals in
enumerating the £ (t). The coefficients of Eq.(18¢c)
are given by Table 6.

As shown shortly, the adiabatic approximation
fails to describe LRA-BWR transient adequately.
The main reason for this failure is that the approx-
imation can not follow the reactivity change in-
duced by the rod withdrawal properly. To remedy
this deficiency of the adiabatic approximation,
therefore, a modified procedure is adopted. The
procedure consists of computing the static reactiv-
ity as a function of control rod withdrawal position
and representing the results by the amount of
reactivity change equivalent to the control rod
withdrawal. Fig.3 shows the 3—-D CMSNACK com-
putaion for the effective multiplication factor of
LRA-BWR core as a function of control rod posi-
tion. Since the rod is fully withdrawn in 2
seconds, the variation in k.4 is readily reduced to
the corresponding reactivity change as a function
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Table 6. Numerical values of Coefficients, ®cx, £

¢ 0 1 2 3 4
P31 | 0.72830.7283 | 0.7253 ) 0.7190 | 0.7145

5 6 7 8 9 10
0.7119 | 0.7102 | 0.7090 | 0.7080 | 0.7072 | 0.7067

1.015 %
1.011 r
1.007

1.003

L : ’ 1 PR 2 2 1
S —— 120 180 260 300¢a

contro) rod position

Fig.3. Variation of Keff. vs. Control Rod Position

of rod withdrawal time. In reducing the variation
in the k.4 to the time—dependent reactivity change
we observed that the sole effect of conirol rod
movement is to change the thermal absorption
cross section of the material region R in Fig. 1.
With this observation we incorporated the reactiv-
ity change due fo rod withdrawal int the £3(t)
term in Eq.(17) by the following equation

P3t)= L3(0)+ P (1) (19)

The £.,(1) is then determined so that the varia-
tion of the k4 in Fig.3 is simulated by Eq.(18) in
combination with Eq.(17). The results are given in
the form of piecewise interpolation :

dJ. Korean Nuclear Society, Vol. 22, No. 4, December 1990

10
ch(t)= 21=0A ‘Dcxl 7 l(t)-

The coefficients are given in Table 7.

Table 7. Numerical values of Coelfficients, Pcx, £

4 0 1 2 3 4
P 0. ]0.4755]15.439 | 47.195 | 46.864
5 6 7 8 9 10
32.697 | 22.108 | 15.118 | 10.389 | 6.2778 | 1.9342

The point kinetics parameters obtained in the
above are used to obtain the point kintcis solution
to the LRA-BWR kinetics problem by the POT-

power _density (w/cc)

1c®
30750 w/ce at 0.845 sec
9195 w/cc at 0.855 sec
10 [
103 n
102 -
1 — CMSNACK
0 r
~+=  POTRAN
1g° | s PR
x 10 P
-
/’/
- POTRAN
—/
10" ——
Adiabatic Approx.
1072 1 1 1 1 1| 1 I B | !

Time (second)

Fig.4. Comparison of POTRAN and 3-D CMSNACK
results for Transient Power Density
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Table 8. Comaparison of POTRAN Computation with 3~D CMSNACK Results

Transient Methods | CMSNACK  POTRAN
Parameters

K for initial state 997393

time to first peak(sec) 855 ,845
power at first peak(w/ cc) 9195 30760
control rod position from

bottom of core(cm) 1275 126.8
time to second peak 1.443 1.293
power at second peak 458 1084
control rod position from

bottom of core(cm) 216.5 194
power at 3 seconds 74.2 1350
CPU time (sec) 5201 77
MV-8000

RAN code. Table 8 and Fig.4 compare the POT-
RAN results with the 3-D CMSNACK computa-
tion. As mentioned already, the point kinetics pa-
rameters obtained by adiabatic approximation get
nowhere in describing LRA-BWR transients. On
the other hand, the modification of the reactivity
parameter in accordance with static reactivity
change with rod withdrawal gives rise to the POT-
RAN solution which is closer to the 3-D reference
CMSNACK computation. It is seen that the POT-
RAN computation describes the overall transient
behaviour of LRA~BWR in a similar way as the
reference 3-D computation, yet discrepancies are
observed in predictions of the core peak power
and the fuel temperature. This is regarded as the
limitation of the point kinetics model in so far as
the kinetics parameters are derived by the
approximate schems as adopted in this study.

4. Conclusion

The comparison of the low dimensional kinetics
methods with the refernce 3-D method shows
both limitation and advantage of the former
methods. Needless to say, the main advantage of
low—dimensioal kinetics methods lies in the fast
computing speed. As shown clearly in Tables 4

and 8, the 1-D ODTRAN and the POTRAN codes
are faster one or two order than the 3-D
CMSNACK code. This is why the low dimensional
methods are adopted in the safety analysis of the
power reactors. In spite of this advantage, limita-
tion of these low—dimensional method should not
be overlooked. Among other things, the low-
—dimensional method requires careful procedure
of input preparation in order to ensure reasonably
acceptable accuracy.

In the applications of 1-D ODTRAN method to
the rod ejection transients like the LRA-BWR
problem the flux volume weighting scheme with a
combined usage of static 3-D fluxes in ARI and
ARO core configurations turns out to be satisfac-
tory. This suggests the possibility of deriving
another 1-D kinetics method using time—depen-
dent synthesis method, which to be pursued in
future study. In the case of the point kinetics POT-
RAN code, the adiabatic approximation may be
useful in enumerating such parameters as 8 and
A. Yet the reactivity parameter should be derived
so that the reactivity change in the course of rod
withdrawal is adequately simulated. The experi-
ence in this study suggests that computations of
the static reactivity change provides a simple but
practical way to get the reactivity parameter to be
used in the POTRAN applications.
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