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Abstract

The optimal control of xenon concentration in a nuclear reactor is posed as a linear
quadratic regulator problem with state feedback control. Since it is not possible to measure
the state variables such as xenon and iodine concentrations directly, implementation of the
optimal state feedback control law requires estimation of the unmeasurable state variables,
The estimation method used is based on the Luenberger observer. The set of the reactor
kinetics equations is a stiff system. This singularly perturbed system arises from the interaction
of slow dynamic modes (iodine and xenon concentrations) and fast dynamic modes (neutron

" flux, fuel and coolant temperatures). The singular perturbation technique is used to overcome
this stiffness problem. The observer-based controller of the original system is effected by
separate design of the observer and controller of the reduced subsystem and the fast sub-
system. In particular, since in the reactor kinetics control problem analyzed in the study the
fast mode dies out quickly, we need only design the observer for the reduced slow subsystem.
The results of the test problems demonstrated that the state feedback control of the xenon
oscillation can be accomplished efficiently and without sacrificing accuracy by using the

observer combined with the singular perturbation method.
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1.Introduction

After the accidents at the Three Mile Island nuc-
lear reactor and other facilities, there has been a
growing interest in the performance prediction and
control of nuclear power plants. In designing a
nuclear power plant it is necessary to predict and
control the performance of the plant under various
dynamic conditions. In a large thermal reactor
operating at a neutron flux in excess of about 10*
neutrons/cm’sec, the most important fission pro-
duct poison is Xe-135 because of its exceptionally
large capture cross section.

The physical explanation of how xenon can in-
duce spatial power oscillations in a nuclear reactor
is well described in textbooks on nuclear reactor
physics. [1-3] Growing and serious power oscilla-
tions in a reactor can cause changes in the power-
peaking factor. Thus control of the xenon oscilla-
tions is important not only for safety but also for
economical operation of a nuclear power plant.

In this paper, the estimation and the optimal
control of xenon concentration in a nuclear reac-
tor is considered. The basic approach to the prob-
lem is the linear optimal control theory in state
space. State-variable representation results in a
model in terms of first-order differential equations.

In nuclear reactors, it is not possible to measure
the state variables such as-xenon concentration
and iodine concentration directly. For the imple-
mentation of the optimal state feedback control

law, it is thus necessary to estimate the unmeasur-
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able state variables.[4,5] The method used in this

paper to estimate the xenon and iodine concentra-
tions is based on the Luenberger observer.[6]
The optimal control of xenon concentration is
posed as a linear quadratic problem with state
feedback control. The control input information is
obtained from the observer. In this study we are
not partcularly concerned with the stability itself of
the reactor, but we attempt rather to find the
“best” control strategy in the context of modern
optimal control theory. [7]

In numerical analysis of reactor kinetics, the sys-
tem of equations is stiff.[8,9] This singularly per-
turbed system arises from the interaction of slow
and fast dynamic modes. This problem requires
expensive integration routines. As a tool to over-
come the stiffness problem, the singular perturba-
tion method is used.[10-12] The singular per-
turbation approach alleviates both high dimen-
sionality and stiffness. It reduces the model order
by neglecting the fast phenomena. It then im-
proves the approximation by reintroducing their
effect as “boundary layer” corrections calculated in

separate time scales.
2. Reactor Kinetics Model

2.1 Reactor Kinetics[3,13]
Spatial-independence and a one-energy-group
reactor are assumed in this study. The point kine-
tics equation used in this study is
1 d¢ I

o dt — oA T oXSE
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The reactivity £ is made up of several compo-
nents: Reactivity due to control rod motion, reacti-
vities due to fuel temperature and coolant temper-
ature. That is

P =0 pa— a{Ti—Tr)—~ @ {Tc— Te)
where

£ =reactivity

$ =thermal neutron flux

'* nuclei per cubic centi-

X=concentration of Xe
meter

v =thermal neutron velocity

A=neutron generation time

a ,=coolant temperature coefficient

@ ;=fuel temperature coefficient.

The fuel and coolant temperatures are governed

by the following heat transfer model

d
IOJCpfat_sz € 2:¢ —h(T—T)

£ cCpc—;jt‘Tc-—— h(T/"’ Tc) - [ @ \CP] (Tc— Tln)

where
Tr/=average fuel temperature
T.=average coolant temperature
T»=inlet coolant temperature
Cor=specific heat of fuel
Ce.=specific heat of coolant
h=heat transfer coefficient per volume
(w).=coolant flow rate to volume ratio
€ =fission to heat energy conversion factor
P ;/=average fuel density
=average coolant density.
The xenon and iodine concentration are governed

as follows.

d

El'= V136 — Ad

d

-d{X: Y256+ Ad— AxX—0:X¢
where

I=concentration of I'® nuclei per cubic centi-
meter
X=concentration of Xe' nuclei per cubic centi-

meter

101

<+ HS. Woo and N.Z. Cho

Ai1=decay constant of '®

0 1=microscopic capture cross section of ['* for
thermal neutrons

¢ x=microscopic capture cross section of Xe™®
for thermal neutrons

2 /=macroscopic fission cross section

«=macroscopic absorption cross section

7 i=fractional yield of I'* from fission

¥ x=fractional yield of Xe'® from fission.

Initial conditions are required for the above
kinetics equations to be well defined.

2.2 Linearized Equations of Reactor Kinetics

For many cases, we are interested in time be-
havior of the small perturbations in a nuclear reac-

tor which is operated in a steady state condition.

The steady state is obtained by setting time deriva-

tives to zero.

_fo
A

0=c¢ Z,;¢0—h(To—Tx)

0=h(Tp—Ta}— (@v Co)c (To— Tio)

03,7121?50-‘ Ado

0=7xZ;Po0+ Ado— AxXo— 0xXo b0

0

po—v axXobo

The steady state condition is related to flux level
as follows.

P o= 0 x U AXo

Tm—m:%&

& Sido
T‘O_T’"O*m[wvcp]c

fo= YiZsdo
Y

o (Yx+7)Sido

T Axtoxdo
We then linearize the reactor equations around the
steady state as follows.

1 d _ PO ay

Goa? p= (A K)o b b
acho ¢o

Y ST— axdod X+ UASPmd
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as follows...
x=Ax+Bu
y=Cx
where

x=[5¢

v

0Ty 0T 01 6X|7

u=[8 Prs 8 Tnl”

é¢
We can represent these equations in matrix forms y z[ , 9 TC]T
P a ¢ ]
FTO_”:XOU U[; $o —“;K¢o 0 —oxdo
v h h
€ 2 P Cy Y 2 Cot 0 0
A= h "
0 — _n___ev
PCo P.Cu P 0 0
ViZsv 0 0 —A 0
| 7x20 —oxXev O 0 7 Ax+0'x¢o_J
B=r $o 0 - Suppose the system is described by the linear
vA state equation
0 0 x=Ax-+Bu, x(0)=xo (3.1)
0 d and the performance index to be minimized is
. 1 17
0 0 J=—x)Hx(t) +5 i
-0 0 - X(OQ(x(t) + uT(HR(tu(t))dt 3.2)
c= 1 0 0 O] where the final time t is fixed, H and Q are real
0 O 1 0 0 symmetric positive semidefinite nXn matrices and

with inital pertubations are provided as initial con-
ditions x(0).

3. Optimal Control Theory

The objective of optimal control theory is to
determine the control inputs that will cause a pro-
cess to satisfy the physical constraints and at the
same time minimize (or maximize) some perform-
ance criterion. The references on the optimal con-
trol theory are rich in the literature. [4-5]

3.1 Optimal Feedback Control with Full State

Measurement

R is a real symmetric positive definite mXm mat-
rix. It is assumed that the states and controls are
not bounded, and x{t} is free. Here n is the
dimension of state vector x and m is the dimen-
sion of input u.

The Hamiltonian is defined as

1
HIx(#), uft), pl#), 1] =5x" Q)+
%u’(t)R(t)u(tl+pT(t)A(t)x(t)+pT(t)B(t)u(t). (3.3)

Then the necessary conditions for optimality are
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x(t)=A(t)x(t) + Bu(t), x(0)=xo (3.4)
plty=—Q(t)x(t) —A(t)p(t), p(t)=0 (3.5)
0=R(tiu(t)+B(t)p(t). (3.6)

Equation(3.6) can be solved for u(t) to givge

ult)=—R7{t)B"(t)p(®) 3.7)
where the existence of R™! is assured since R is a
positive definite matrix. Substituting (3.7) into (3.4)
yields

x(t) =A(t)x(t}—B®R'(HB"(t)p(t) (3.8)
The augmented homogeneous differential equa-
tions can be written as

[)'c(t) }= [A(t) —B(t)R“(t)BT(t)] [X(t)

s0 171200 —aw | lowl @2

(3.10)
where K is an nXn matrix satisfying the following

We can represént pt)=Ki(t)x(t)

Riccati equation

K(t)=—K(HA® —ATHK(E — Q)+
K(HB(t)R™ ()BT K(t) (3.11)
with the boundary condition K({t)=H and K is
symmetric. Substituting (3.10) into (3.7), we obtain

ut)= —F(t)x({t) (3.12)
where
Fit)=R()B"(tK(®) (3.13)

Eq.(3.12) indicates that the optimal control law is a
linear, albeit time-varying, combination of the sys-
tem states. In addition, in order to implement the
optimal control law, it is necessary that all state

variables must be measured.

3.2 Optimal Control Problem with Incomplete
State Measurement

When state-variable is not completely measur-
able, the optimal control input is obtained by

u=—F% (3.14)
where F is given in the same way as in Section
3.1 by the Egs.(3.11) and (3.13), and % is the
solution of the observer dynamics equation prop-
osed by Luenberger[6]

%A% +Bu+Gly—Cx] (3.15)
G in Eq.(3.15) is called the observer gain matrix to
be determined.

Using Eq.(3.14) and (3.15), the augmented sys-
tem equation for x and % is represented as follows.

<1 A ~BF
[z}=[GCA-—BF—GC][2]
Let

e=x—X.

Then e is the difference between the true state x
and the reconstructed state % estimated by the

(3.16)

observer equation. It is easily seen that e satisfies
the differential equation

e(t)=(A—GC)elt) (3.17)
Eq.(3.17) indicates that the observer gain matrix G
can be chosen such that the reconstruction error
has desirable dynamic characteristics. For exam-
ple, G is chosen such that the eigenvalues of A—
GC have large negative values. Then the recon-
struction error will disappear quickly. Substitution
of #=x—e into (3.1) using (3.14) yields

x=(A—BF)x+BFe. (3.18)
The augmented equation of x and e is then repre-
sented as
X A—BF BF x
=070 aceclll] 8.19)
The characteristic equation of the system becomes

sI—A+BF —BF

det 0 M—A+GC}_
det(sI—A~+BF) - det{sl—A+GC) {3.20)
Figure 1 shows the structure of an output feed-

e e

back control system.
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Fig.1. The Structure of an Output Feedback Control
System
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4. Singular Perturbation Theory

The point reactor kinetics model described in
Section 2 involves characteristic time constants of
widely varying magnitude due to the coexistence
of slow and fast dynamic phenomena. This results
in severe restriction of the time step used in
numerical solution schemes directly applied to the
kinetic equations.

The primary purpose of singular perturbation
approach is the alleviation of the high dimen-
sionality and ill-conditioning resulting from the
coupling of slow and fast dynamic modes. [10-12]

This time-scale approach is asymptotic, that is,
becom@és exact in the limit as the ratio # of the
speeds of the slow versus the fast dynamics tends
to zero. When # is small, approximations are
obtained from reduced-order models in separate

time scales.

4.1 Two-Time-Scale System

Many systems can be modeled by the set of
nonlinear differential equations as follows.
(4.1a)
(4.1b)

where the mi-dimensional vector xi is predomi-

Xi =flx1, xz, t}, x1(to) =x10

kzzG(Xl, xz, t), x2(to) =Xz

nantly slow and the n.-dimensional vector x. con-
tains fast transient superimposed on a slowly
varying “quasi-steadystate” ; that is, ||xi] <||x2l|.
One way to express this fact is to introduce g= #
G and thus scale g to be of the same order of
magnitude with f. The scaling parameter # is the
speed ratio of the slow versus fast phenomena and
multiplies the derivative of x,

(4.2a)
(4.2b)
This is the standard singular perturbati_on problem

Xi :f(Xl, xz, 1), Xl(tu):Xm

M )kz:g(Xx, Xz, 1), xe(to) =Xz

studied extensively in the literature. [10-12]
®Mode Separation of the Singularly Perturbed
Linear System

Consider the singularly perturbed linear time-

varying system given by

dJ. Korean Nuclear Society, Vol. 21, No. 2, June, 1989

x1=Auxt +Awxz+ B, xi(t)) =x10 (4.3a)
# x2=Anix1 + Azaxe + Bau, xa(to) = x20 (4.3b)
y=C1X1+C2x‘2 (43C)

where # >0 is a small singular perturbation para-
meter, xi(t) and x:{f) are m and n:— dimensional
state vectors respectively, uft) is an r-dimensional
control vector, y(t) is an m-dimensional measure-
ment vector, and to is any initial time.

The reduced subsystem of the original system
{4.3) is obtained by neglecting the fast mode dyna-
mics, i.e., setting x2=0:

X =Anuxs +Arexz + Bits, Xs{to) =x10 (4.4a)
0=Azx.+Azx:+ Beus (4.4b)
Ys=Cix: + Cexz. (4.4¢)

If A="! exists, X2 is solved from (4.4b) and then
substituted in (4.4a) and (4.4c) to obtain the slow
mode behavior

%= Aaxs + Bous, x:(to) =xu10

¥s=Coxs + Dous
where

Ac=Au—ArAn"'An

Bo=Bi1—AiA» " 'B:

Co=C1—CoAzz"'An

Do=—CsAz"'Ba.
The fast mode behavior is governed by

(4.5a)
(4.5b)

T V= Aax{ T) B ),

xA0) = xz(to) — X2(to) (4.6a)
Y(7)=Cux(T) (4.6b)
where T is the “fast time-scale” defined by

it

7 (4.6¢)
and x; is the “boundary layer’ of the fast mode
defined by

Xr=Xz2—Xe. (4.6d)

Thus the singularly perturbed perturbed system
(4.3) of dimension n is decomposed into two low-
er-order subsystems. Thus we know that if Az is a
stability matrix then two-time-scale approximation
of the state (4.3a) and (4.3b) is
xi{)=x(t)+ O(#)
x2(t) =g:A) +x( T )+ O(#)
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where xi(t} and x:(t) are the limits as #— 0 of the
exact slow and fast state of xi(t) and x:(t), respec-
tively. x{ 7 ) decays rapidly in the initial “boundary
layer” interval after which the system response is
essentially due to x.{t) and x(t).

4.2 Observer-Based Optimal Requlators for
Singularly Perturbed Systems

The singularly perturbed system (4.3) can be
written as

)'CZAX‘FBU, x(to)=xo

v=Cx

(4.7a)
4.7b)
where

~ 1

A~I—/; A

1
“ 1
0 717!2

Il

An A
e o

e

As shown in Section 3, the full-order observer can

B

i

be designed to have arbitrary dynamics if the ori-
ginal system is completely observable. For the sys-
tem described by the dynamics equations (4.7a)
(4.7b) to be completely observable, it is necessary
and sufficient that the following nXnm matrix has
rank of n:

V=(C" A" C" ~(Ar'C7].

It has been shown [10] that the state recon-
struction of the original system Eq.(4.3) [or
equivalently Eq.{4.7)] can be effected by separate
observer design of the reduced (slow) subsystem
Eq.(4.5) and the fast subsystem Eq.(4.6) in diffe-

rent time scales. This mode separation forms the
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basis of observer-based controller analysis and de-

sign in the following sections.

4.2.1 An Observer-Based Controller for the
Reduced System
And observer-based controller for the reduced
systern is obtained from the optimal control theory
as
us=—Fu&, (4.8)
where % is an estmate of x. and is generated by
the full-order observer for the reduced (slow) sub-
system
."ks = (Ao - GUC(l)f(s + Goys + (Bo - GoDo)us. (49)
The state reconstruction error defined by elt)=%.
—x; satisfies
&= (A—GuCo)es,
es{to} =%s(tn) — xo(to) 4.10)
where Gu is chosen such that it is asymptotically
stable.
The optimal control gain Fo in Eq.(4.8) is given as
Fo=—R. 'BUWK.\{t) (4.11)
where K.t} is the solution of the Riccati equation
K.=—A"K.—KA,+KBR ‘B’ K.—Q. Kdt)=0.
(4.12)
The augmented equation of control and observer
dynamics is
[Xs] _ [AO_BUFU BuFo ] [Xs
0 Ar—GiCo
The reduced system is uniformly completely stabi-

] 4.13)

e e.

lizable by the controller, i.e.,

lim [xs(t)]

t=0| g(n] =0 (4.14)

4.2.2 An Observer-Based Controller for the
Fast System

An observer-based controller for the fast system
is

u( T )=—Fut)%(7) (4.15)
where %( 7 )={Ax—G:C)%+ Gy T ) +Bou(7) (4.16)
The optimal control gain F. is given as

Fx(t)=—R. 'BTLK(t) 4.17)
where K{t) is the solution of the Riccati equation

K= —A"2K— KAz +KBR 'B/K—Q,
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Kit)=0. (4.18)
Since the state reconstruction of the fast subsystem
Eq.(4.16) occurs in a 1/ # faster time scale than
that of the slow subsystem Eq.(4.9), the response
of the observer of the original dynamics system
Eq.{(4.3) will be dominated by the observer
Eq.(4.9) after the decay of fast observer transients.
In particular, if Az is uniformly asymptotically
stable, we need only design an observer Eq.(4.9)
for the reduced subsystem.

5. Results and Discussion

In a nuclear reactor, there is ill-conditioning in
the dynamics equation which arises from coupling
of fast and slow dynamics. So we partition the
system equation into two subsystems of slow and
fast modes using singular perturbation approach.
Computing time is reduced remarkablely and the
results that are obtained from the two-time-scale
system are in good agreement with those of the
original system solved directly. The fast mode sub-
system is stable (i.e., A= is stable) so the solution
of the reduced subsystem is accurate to the solu-
tion of the original system, except the initial condi-
tions. But the states of the reduced subsystem is
impossible to measure. So we estimate the states
using the observer.

Test problems demonstrate that the singularly
perturbed system with some unmeasurable states

can be controlled optimally with observer. The

i 0 —0.5727X10°
0.1132x10 °® —0.4284
A= 0 0.23
2495 0
| —2213 0
[0.4545X% 10" 0
0 0
B= 0 4.606
0 0
L 0 0

dJ. Korean Nuclear Society, Vol. 21, No. 2, June, 1989

first test problem is an unstable system. The iodine
and xenon concentrations and thus the neutron
flux oscillate, which will affect safety of the reactor.
The second test problem is a stable system. The
settling time of the problem is, however too long
so that control is needed. Only the results of the
first test problem are presented in this paper. The
results of the second test problem are available in
Ref. 14.

The first test problem is to obtain the optimal

input which minimizes the performance index J
i
J= | (et +1.0X 1070 +1.0X 10°u%)dt

0
where the reactor dynamics equation is repre-

sented in matrix form as(see Section 2)
x=Ax-+Bu
y=Cx

where

x=[—3—u¢—an ST o1 oX|

u=[0 s §Tl"

5 ¢

v

v=1 S Tc} T

We use the equilibrium condition of the state vari-
ables in Table I, and the values of other para-
meters in the reactor dynamics equations are
shown in Table ll. The elements of the matrix A

and B are obtained as

—0.3682X10° 0 —0.1750X1073
0.4284 0 0
—0.4836 0 0
0 —0.29%107* 0

0 0.29X10™* —0.1960Xx107?
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Table I. Equilibrium State Values
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The poles of the dynamics equation are

A1=—0.1424+j0.25X 10"
Az=—0.1424—j0.25X 102

107

State Variable Value Aa=—4.97
Aa=—0.576X107°+j0.808 X 10™*
As=—0.576X10"°—j0.808 X10*
13 2,
% 3010 fem *-sec As and As are located in the right half plane.
o Thus the system is unstable and the magnitudes of
Tf ] 1200 °F Asand As are too small in comparison with the
other values such that we can apply the two-time-
T.o 600 °F scale method of the singular perturbation
approach. The slow and fast modes are as the
Too 570 OF following :
slow mode xi=[81 6 X]7
16 ;.3 _[o9% r
Io 1.96x10"° /em fast mode o= |—"—0T; o T.
with # =107,
X, 3.05x10% /cm?3
Table II. Parameters of Neutron Kinetics
Parameter Value Parameter Value
o, 0.81x107% Ak /k -OF oy 1.26x107° Ak /k -°F
h 0.54 Jicm3-°F -sec A 5%107%sec
Pr 10.96 g /cm? Pe 0.697 g /cm?
o 0.115 7 /g -°F Cpe 3.368 J /g °F
€ 3.204x107 /fission v 2200 m/sec
Y 0.056 Yx 0.003
A 2.9x10%sec™! Ay 2.1x105sec™!
Oy 3.5x1078¢cm? z 0.2025¢m™1
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Table Il shows the initial perturbations to the
dynamics system simulated in this test problem.

Table III. Inital Perturbations

State Variable Inital Perturbation
%“1(0) 0 /cm?
8T/ (0) 0o
8T, (0) 0°F
31 (0) 1.0x10% /cm®
3X (0) 1.0x10° /em3

We need focus only on the reduced system. If
the state variables | and Xe concentrations are
measurable, we can use them for optimal state
feedback control. But it is not possible to measure
these state variable, so an observer is used. The
observer gain is obtained by the pole assignment
method such that
lime:(t)=0
The chosen desired poles of the observer are —
65.1 and —4.9. Then the observer gain matrix
becomes

_—LoXx1ov 0

°~[ 0 —5.0%10" }
The next step is to obtain the optimal feedback
control gain matrix Fo assuming the weighting mat-
rix Qs and R. as

10 0

Q’:[ 0 10 J
_[LOX107 0

“[ 0 1.0x 10" ]

The steady-state solution of the Riccati equation is
obtained using Kalman-Englar iterative method
(4] as
304 339

[0 %

339 38.64.

dJ. Korean Nuclear Society, Vol. 21, No. 2, June, 1989

So the optimal feedback gain is obtained as

Fo=R,"'B"K;

_10.28X107° —0.16x107"

N [0.16)( 10° 0.2710°°

Figures 2a through 2¢ show the results of optim-
al control assuming as if all the state variables are
measurable. Now Figures 3a through 3c show the
corresponding results of optimal control when the
observer is used for the state variables (I and Xe)
that are not measurable. We note in Figures 4a
and 4b that the errors between the real states
obtained with the observer based feedback and
the setimated states provided by the observer.
The observer catches up with the actual behavior
of the states very quickly. Because of the slight
time lag introduced by the observer however, an
increased input is required and the response is
different from that of the system without observer
in the early phase of the transients.

1.5B+009
L.0R+000

8

5.0 +0
B 008

0.0E+000

~6.0R+008 L-»—--»———— gy
time (10 sec)

FIghrJZl Response of the (Contralled System
) Agsuming States ave Weawmsble

1.52-006 ’—
1.08-008
6.08-0n8
+4
a2
5.
0.0%+000 |- 80,04 e
~5.08-008 |-
—L.DE— Ry S
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6. Conclusions

In this study, the estimation and a optimal con-
trol of xenon concentation in a nuclear power
plant were investigated.

As a reactor kinetics model, we used one-
energy group point reactor model with feedback

effects such as xenon absorption, fuel and coolant
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temperatures.

The optimal control of xenon concentration is
posed as a linear guadratic problem with state
feedback control. It is not possible to measure the
state variables such as xenon concentration and
iodine concentration directly. For the implementa-
tion of the optimal state feedback control law, it is

thus necessary to estimate the unmeasurable state
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variables. The method used in this work to esti-
mate the xenon and iodine concentrations is based
on the Luenberger observer.

In numerical analysis of reactor kinetics, the sys-
tem of equation is stiff. This singularly perturbed
systemn arises from the interaction of slow dynamic
modes (iodine and xenon concentrations) and fast
dynamic modes (neutron flux, fuel and coolant
temperatures). As a tool to overcome the stiffness
problem, the singular perturbation method is used.
The singular perturbation method allows mode
separation of the original stiff system into the slow
reduced subsystem and the fast subsystem in diffe-
rent time scales.

The observer-based controller of the original
system is effected by separate design of the obser-
ver and controller of the reduced subsystem and
the the fast subsystem. In particular, since in the
reactor kinetics control problem analyzed in the
study the fast mode dies out quickly (i.e., Az is
uniformly asymptotically stable), we need only de-
sign the observer for the reduced slow subsystem.

The results of the test problems demonstrated
that the state feedback control of the xenon
oscillation can be accomplished efficiently and
without sacrificing accuracy by using the observer
combined with the singular perturbation method.
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