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Abstract

For the probabilistic risk assessment of the high level radioactive waste repository, some methods
have been proposed up to mow. Since the system has highly uncertain input parameters, the
evaluated risk for some input parameter values has high uncertainty. In this paper, methods of
uncertainty and sensitivity analysis are devised to analyze systematically these factors and applied
to a probabilistic risk assessment model of the high level waste repository.

The statistical package SPUSA deveoped through this study can be used for any other fields,

e.g., statistical thermal margin analysis, source term uncertainty analysis, etc.
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1. Introduction

The conventional safety or risk analysis is
based on deterministic approach, which is too
conservative because it considers the uncertainties
of the system design or state parameters simu-
ltaneously. Nowadays probabilistic and statistical
approach is being performed to assess the safety
or risk of the nuclear power plant or other
engineering system more reasonably.

In the statistical safety assessment, uncertainty
analysis plays a very important role. There are
three types of uncertainty, namely, modeling
uncertainty, parametric uncertainty, and com-
pleteness[1]. The modeling uncertainty are
analyzed by the change and development of
the model. The parametric uncertainty is the one
propagated from the uncertainties of the system
parameter itself. The completeness is the extent
to which the analyzer can recognize the nature
of the system. The parametric uncertainty is
mainly concerned in this paper.

Various methods to assess the probabilistic
risk or uncertainty from the high or low level
radioactive waste repository have been proposed
[2-6]. Since the system, however, has highly
uncertain input parameters, the evaluated risk
has high uncertainty. Up to now, there is little
work to exploit this problem. Some methods
which are used in other fields are adopted and
applied to this system in following aspects;

1) to assess the propagated uncertainty from
the input parameter uncertainties (uncertainty
propagation analysis)

2) to seek for the most dominant factors which
contribute the output uncertainty (sensitivity
analysis)

3) to conmstruct the reduced system model
composed of the most dominant input parameters
(model reduction)

For this analysis, statistical package for uncer-

tainty and sensitivity analysis, SPUSA, is de-
veloped. SPUSA includes Crude Monte Carlo,
Latin Hypercube Sampling, Experimental Design,
Analysis of Variance, Response Surface Method,
Stepwise Regression Method, and Fourier Ampli-
tude Sensitivity Test, etc.

The probabilistic risk assessment model pro-
posed by Pritzker and Gassmann[2,3] is used
here to discuss the applicability and characteri-
stics of the various uncertainty and sensitivity

analysis methods.

2. Methods of Uncertainty and
Sensitivity Analysis

2.1. Three Features of Uncertainty Analysis
Various conventional methods of uncertainty
analysis are reviewed in this section. The main
features of each method are described at the
point of view of the three capabilities mentioned
in section 1, ie., the capabilities of uncertainty
propagation analysis, sensitivity analysis, and
reduced model construction,

The uncertainty propagation analysis includes
the estimation of distribution function of output
variable and its representative values, for insta-
nce, mean, median, variance, standard deviation,
and higher order moments. The Monte Carlo
simulation technique is a representative one.

The measure of sensitivity is divided into two
categories. One is the differential sensitivity

measure, Linear sensitivity theory

dy
dx:‘ zi=Xi e
and adjoint sensitivity theory are the represent-

ative ones. The other is the global sensitivity
measure, f f aa%idxl---dxk. Fourier Amplitude
Sensitivity Test (FAST) is the representative
one. The adjoint sensitivity theory[7-9] is a
powerful method when the number of input
parameters are large, because this method gives
the sensitivity of output variable for all the
parameters with only single run. A major defect
of this method is that each computer program
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has to be made fer each system model to be
analyzed. This method is not considered in this
paper, because the purpose of this paper lies on
the development of statistical methods.

The methods which have a capability of the
reduced model construction are response surface
method and stepwise regression technique, These
methods also provide sensitivity measure as a
byproduct.

Latin hypercube sampling, experimental design
technique, and Fourier amplitude sensitivity test
are used to generate systematic sampling points.
Least square method and analysis of variance
are used as a basic tool for response surface
method and stepwise regression technique.

2.2. Crude Monte Carlo Method[10-12]

Crude Monte Carlo (CMC) method is the most
primitive but the most powerful method in
uncertainty propagation analysis. First it gener-
ates random samples whose size is over than
thousands according to the distribution shape of
each input parameter. Each random combination
of random samples (xi,z §, -, xL), i=1,,n
is passed through the system function to gen-

y = f(x,,xz....,xk)

erate corresponding output value 3. The resu-
ltant y/s represents uncertainty distribution of
output variable y. The mean, variance, and
higher order moments of y are calculated from
these y/s. The distribution function of y is
obtained directly from these y/’s by making
histogram of tens or hundreds of equal intervals.
Fig. 2.1 illustrates this process. Sometimes the
distribution function of » is matched to an
appropriate empirical distribution shape by mo-
ment matching technique using some lower order
moments calculated above. The major deficiency
of CMC method is too much computing cost due
to large sample size #n. Thus it is not used dir-
ectly in practice. To avoid this problem, the
following procedure is usually used. First the
complex system function is simplified to an
equivalent low order polynomial by response
surface technique and then CMC is applied to
this polynomial to construct the output distri-
bution.
2.3. Latin Hypercube Sampling[13-15]
LHS, which was originally proposed by McKey

et al [13], is a kind of variance reduction
1, v - f(x%,x;.....xi)
2. ¥y = f(xf.xg.....x:)

AA///{/ii:TT\E\bx x

_SAMPLING

~ N N N
N. vy < f(xl.xz,“.,xk)

il ﬂmh

_SORTING

Fig. 2.1. Crude Monte Carlo Method for Uncertainty Propagation Analysis
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X1

%]

X1l = uniform distribution

X2 = normal distribution

Fig. 2.2. An Illustration of Latin Hypercube
Sampling Points in Two Dimensional
Case with n=4,
technique to generate a sample of size z from &
random variables, Xi, X,,---X:. The range of
each variable is divided into » nonoverlapping
intervals of equal probability. One value from
each interval is selected at random, The # values
thus obtained for X; are paired at random with
the 7 values obtained for X,. These n pairs are
combined in a random manner with the 7 values
for X; to form #n triples. The process is contin-
ued until a set of A-tuples is formed. This
resultant set of Z-tuples is the Latin hypercube
sample. Fig. 2.2. illustrates this process in two
dimensional case with 2=4. This technique is
good because it samples without undue sampling
size #n. Sample size n is known to be sufficient
if n=2k,

2.4. Experimental Design Techanique[17~20]
There are several methods in designing experi-
ments to establish a set of sampling points in
the space of the X’s, at which Y will be obser-
ved. The most common of these are two and
three level factorial design, two and three level
fractional factorial design, and central composite

design, which are discussed in this section.

Two level factorial design”utilizes two level
of X’s (coded value of +1). When the number
of factors (here, number of input parameters)
are k, the required number of code runs are 2,
for the full (complete) factorial design and 2¢~*
for fractional design, where 27 is the fraction
needed to reduce the required numbers. In the
fractional factorial design, 2—p parameters are
combined completely but remaining p parameters
are composed of product of already defined k—p
parameters levels. Obviously, the higher the
degree of fraction is, the less is the degree of
resolution in analyzing the lower order effects
(main or cross term effects compared to the
higher order interaction effects).

Three level design is the same as the two
level design except that it needs three level of
X’s (—1,0, +1). But in these design the num-
ber of runs is increasing more rapidly than that
of two level design as the number of input par-
ameters increases.

In central composite design, however, three
distinct portions are included: (1) two level
factorial points, (2) two axial points for each
Fig. 2-3
illustrates three design points for two factors,

parameters, (3) one center point.

where ‘a’ is an arbitrary coded value.
Among the above mentioned type of experi-
mental designs, the two level factorial design
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Fig. 2.3. Central Composite Design Points for
Two Factors
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Table 2-1. Comparison of the Number of Unknowns and Code Runs between Various Experimental

Design Techniques

1st Order Polynomial

2nd Order Polynomial

No. of
Factors No. of No. of Runs *No. of " No. of Runs
k Unknown 2% 20k Unknowns 3k o
3 4 8 2-1= 10 27 — 15
4 5 16 241=8 15 81 34-1=27 25
5 6 32 25-1=16 21 243 38-1=81 43
25-2=8 352=27
7 8 128 21=64 36 2187 31=729 143
2"-2=32 37-2=243
2™=16 373=81
2-t=8
* 2k+,:Co+1

** (Central Composite Design) 2%+ 2k+1

and the central composite design are most com-
monly used for response surface work. The
reason is that the former can be used to fit first
order polynomial with minimum number of code
runs, while the latter is suitable for fitting the
second order polynomial. The major advantage
of the central composite design is utilizing the
information of two level design to consider the
nonlinearity with a few additional data points
in case that the constructed linear model is not
satisfying,

Table 2-1 shows the comparison of the number
of unknowns and code runs required for these
experimental design methods. It is obvious that
the central composite design needs relatively few
number of runs compared to the three level
factorial design.

2.5. Response Surface Method [16~18]

This method is usually used to generate an
approximate relationship between the input par-
ameters and the output variable considering the
system as a blackbox.

When the output variable y is a complex
function of a number of input parameters, z;
(i=1,2,+, k), say,

y=Ff(Z1, L3, -+, T1), @D
the input-output relationship can be approxima-

ted in the form of polynomial as
13
y=by+3b;x;, (Ist order regression) (2,2}
or
k 13
y:b0+§:b;xi+2<z:b,~,-xixj,
i i<j

(2nd order regression) (2,3)
where

2;—2
————" —coded value or level,
dz;

z;=real value,

=

2.4

2%=nominal value,

dz;=unit deviation.

The term response surface refers to the geo-
metrical interpretation of a function of several
independent variables. If the functional relation-
ship is not highly nonlinear in the interested
region of independent variables, then the first
order regression equation can be used. Otherwise,
the second or higher order regression equation
will fit the relationship reasonably. Sometimes
even in case that the nonlinearity is obvious in
the wide range of independent variables, the
first order model can be used in the narrow
interested region of independent variables.

It is the purpose of RSM to generate a sim-
plified polynomial equation from sampled data
set and to extract information for the unknown
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system from this response surface equation. The
coefficients are obtained by the least square
method and the characteristic features of the
system are extracted by using analysis of variance
(ANOVA). ANOVA is described in the follo-
wing section. To generate a sample without
computer simulation, EDT described in the
previous section is usually used.
2.6. Multiple Least Square and Analysis of
Variance [17, 21, 22]
Egs. (2.2) and (2.3) can be represented by
matrix form as
y=Xb-e,

where

2.5)

y =nXx1 observed data vector,

X=nxm design matrix,

b =mx 1 coefficient vector,

¢ =nXx1 error vector, i.e. the difference be-

tween observed data and estimated res-

ponse,
n =number of observations (runs),
f 1+&, for 1st order regression,

"= {1+2k+,4C,, for 2nd order regression.

The best-estimated regression coefficients b can
be found by the method of least squares. If sum
of squares of the error

L=eTe=(y—Xb)T(y—Xb) 2.6)
is minimized, i.e., —25—:0, then the regression
coefficient is represented by

b=(XTX)1XTy, @n

The analysis of variance (ANOVA) is to di-

——
L4
<

SSE .
=%
. {regression equation)

Fig. 2.4. An Illustration of Analysis of Variance
For Single Factor Case

stinguish between the variation due to regression
and the variation due to residual errors from the
total variation. Fig. 2.4 illustrates this for the

single variable case.
Total variation is usually called total sums of

squares (SST) and is defined by
SST=2(y;— =2y} —n(3)?
=yTy—n(5)% @®
Variation due to regression equation is called
sum of square due to regression (SSR) and is
defined by
SSR=2(§;—5)?=25;—n(3)*

=§T§—n(F)2 (2.9a)
Since y=Xb,
SSR=b0"XTy—n(5)2. (2.9b)

Finally, sum of squares due to residual errors
(SSE) can be represented by

SSE=SST—SSR. 2.10)

The degree of freedoms for total variation,

regression equation, and residual errors are n—1,

Table 2-2. ANOVA Table for Multiple Regression

Source ss | DF | Ms F ) Critical F | R?
Regress. SSR E MSR (MSR/MSE) | F(kn—k—1ia) | (SSR/SST)
Error SSE n—k—1 MSE

Total SST | n—1 I ‘ ‘

where S.S =Sum of Squares
D.F=Degree of Freedom
M.S=Mean of Squares=(S8.S/D.F)
n=number of observations (runs)
k=number of regression factors
R2=coefficient of determination
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k, and n—k—1, respectively. From these infor-
mation, ANOVA table for multiple regression
can be made as shown in Table 2, 2.

There are three measures which describes the
accuracy of regression equation to the observed
data. These are MSE (mean of squares due to
residual error), F(=MSR/MSE), and R#(=
SSR/SST, so called, coefficient of determination),
The smaller MSE is, the better is regression,
while the reversed situation is applied for F and
R2, Tt is called that the regression is significant
at a level of 100(1—a) % if

F>F(h,n—k—1; a), @ 11

When the significance of each component
(main effect term, quadratic term, cross-term)
of regression is considered, partial F-test can be
applied, which is defined by

b
T (XTX) '(MSE) *

It is also called that the component x; is

significant at a level of 100(1—a) % if
F,>F(l,n—k—1; a), (2.13)
2.7. Stepwise Regression Technique[17, 21, 227

F; (2.12

SRT is used to select the most important input
parameters, thereby to build regression equation
composed of not an undue number of input
parameters while the constructed regression
equation reveals the input-output relationship.
This procedure selects or removes the most
important or the least important input parameter
sequentially. At each step to decide the adequacy
of the construeted regression model composed of
the selected input parameters, ANOVA is used.

In selecting an input parameters at each step,
partial F value is used. The input parameter
which has the largest partial F value is selected.
For the selected input parameter, F test is per-
formed. If F,>F(1,n—p—1 ; a), where p is the
number of input parameters included in the
regression model, the input parameter is included
in the model and then go to next step. Other-

wise, the procedure is stopped here. The mea-

ning is that the input parameter inclusion is
significant at a level of 100a %.
2.8. Fourier Amplitude Sensitivity Test
[23-28]
Consider a system that is described by an
ordinary differential equations containing % input

parameters, &y, Iy, *--, Is,

d
A {CRE RN 5 2. 14)

where
y =interested system output at time ¢,
¥ =k-dimensional parameter vector.
The basic problem is to determine the sensitivity
of y to simultaneous variations in all the para-
meters ¥, This is done by considering that ¥
has a distribution of values resulting from either
imprecision or uncertainty in their definition.
The ensemble mean value of y is then given by
<y>=f~--fy(t 3 &y, e xe) P(X, 00, L)
dxy---dxy, 2.15)
where
(¢t ; xy, -+, xr)=the solution of Eq. (2. 14),
p(xy, -+, ) =joint probability density fun-
ction of %,

The central idea of the FAST method is to
convert the k-dimensional integral of Eq. (2, 15)
into an equivalent one-dimensional form by
using the transformation

x;=G,;(sin(w;8)]), i=1,-, %

where

(2.16)

G;=a set of known functions,

w;=a set of frequencies,

s =a scalar variable.
By means of this transformation, the variations
of the % parameters are transformed into varia-
tions of the single scalar variable 5. By variation
Eq.(2.16)

traces out a space-filling curve in the m-dimen-

of s over the range —oo<s<oo,

sional parameter space. For a suitable choice of
G;, which transforms the probability density
function p(¥) into s-space, Weyl demonstrated
that
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o5—limit

gt Lo [T 95 @), - 2(©)ds
2.17)
is identically equal to {ydin Eq.(2.15). Eq.
(2.17) is the fundamental expression in the
FAST method for computing the mean value,
variance, and other properties of the output ¥,
By using an appropriate integer frequency set
{wi},
the finite interval (—=,x),
(2.17) becomes

=g [~ 3t 2O, (D),
The variance of y is then
B=k [* 71 20, -, mr()ds— @2

=5—-" (2.19)
The evaluation of ¢, can be carried out by

the parameters, x; are periodic in s on

in which case Eq.

(2.18)

using the s-space Fourier coeflicients of y, From

Parseval’s theorem,

=5k f ‘g ds = 5(A3+BY (2. 20)

where the Fourier coefficients A; and B; are
defined by

J. Korean Nuclear Society, Vol. 19, No. 4, December 1987

1 z

Bj=é7—7.' N y sin(js)ds. (2. 22)
Thus, from Eq.(2.21) and (2,22)
(9)2=A%+Bj=A}. (2.23)
Then,
oi=23,(A3+BY). (2.24)
=

The variances due to w; and its harmonics are
expressed by

ai¢=2§1<AEw.-+B£wf). (2. 25)

The normalized sensitivity measure, partial var-
iance, S,; is defined by the ratio of the variance
due to the frequency w; to the total variance
as follows:

Swi:

owiz
a2 °

Restricting the frequency set to odd integers

(2.26)

reduces the range of s to (—=/2, 7/2). In this
case, ’

y(r—)=y(s,

y(@+9)=y(—9),

y(#/2+8)=y(x/2—5),

y(—n/2+)=y(—n/2—3), .27
and the Fourier coefficients can be expressed as

A=ge [T 5 cosCis) ds, (2.21)
0 ; j odd

Ajz 1 /2 . .
= f , DO —y(—s)]cos(is)ds ; J even, (2.28)
0 ; J even

B'__. /2

L @3- sin(isds ; § odd. (2.29)
This can be further reduced by a simple numerical quadrature as

0 ; 7 odd

Aj: 1 n jmﬂ .
BT (9 Eom - s (77 ) | 1 even, (2. 30)
0 ; J even

Bi= 1 ” . jmn .
Gt | B sin () | 3 odd 2.3D

where yu(—n<m<n ; n=w0mx) is the y which

is calculated at an input set x7=G; {Sin (w.-

mx 1o
SaiT) | mhn ek
It is sufficient if the total sampling points are

determined by N,=2wm.x+1 by the Nyquist

criterion in the digital signal processing theory.

The rapidly-decaying properties of the Fourier
Amplitudes provide that the summation to k=2
is sufficient in calculation of g,:% of Eq. (2, 25),
that is,
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Table 2.3. Integer Frequency Sets and Number of Sampling Points

Number of I F Set {w;} SM iniip um
Variables nteger Frequenc Set {w; al:'n;?nlt];g

5 |11, 21, 27, 35, 39 79
6 1, 21, 31, 37, 45, 49 99
7 17, 39, 59, 69, 75, 83, 87 175
8 23, 55, 77, 97, 107, 113, 121, 125 251
9 19, 59, 91, 113, 133, 143, 149, 157, 161 323
10 26, 63, 103, 135, 157, 177, 187, 193, 201, 205 411
11 41, 67, 105, 145, 177, 199, 219, 229, 235, 243, 247 495
12 31, 87, 113, 151, 191, 223, 245, 265, 275, 281, 289, 293 587
13 23, 85, 141, 167, 205, 245, 277, 299, 319, 329, 335, 343, 347 695
14 87, 133, 195, 251, 277, 315, 355, 387, 409, 429, 439, 445, 453, 457 915
15 67, 143, 189, 251, 307, 333, 371, 411, 443, 465, 485, 495, 501, 509, 513 1,027
16 73, 169, 245, 291, 353, 409, 435, 473, 513, 545, 567, 587, 597, 603, 611,

615 1,231
17 85, 145, 241, 317, 363, 425, 481, 507, 545, 585, 617, 639, 659, 669, 675,

683, 687 1, 375
18 143, 229, 289, 385, 461, 507, 569, 625, 651, 686, 729, 761, 783, 803, 1,663

813, 819, 827, 831
19 149, 275, 361, 421, 517, 593, 639, 701, 757, 783, 821, 861, 893, 915, 1,927

935, 945, 951, 959, 963

0,21 =2( A1  B,20"), (2. 32)
The interference problem, which is caused by
multiples of harmonics between different integer
frequencies, cau be avoided up to a certain de-
gree (order) if the integer frequency sets are
selected as follows:
oot jeonxkow, £,7,k=0,1,2,3,4, .
(2.33)
The integer frequency sets which avoid the in-
terference problem up to 4th order are shown in
Table 2.3.

3. Uncertainty Analysis for High
Level Waste Repository

3.1. Introduction
Various methods to assess the probabilistic
risk or uncertainty from the high or low level
radioactive waste repository have been proposed
[29~31]. Since the system has highly uncertain
input parameters, the evaluated risk has also
high uncertainty. Up to now, there is little work

to exploit this problem. Since both the input
parameters and the output variable of this
system have highly nonlinear natures, the con-
ventional techniques cannot be used directly any
more. Therefore, some different techniques are
developed in this paper to be applicable to
highly nonlinear system models. The probabili-
stic risk assessment model proposed by Pritzker
and Gassmann [2,3] is used here.

3.2. Assumed Radioactive Waste Repository
System and Scenario of Radioactivity
Release

Radioactive waste repository must be located
in a geological formation which is quite stable
tectonically, and at which the probabilities of
the occurrence of an earthquake and a fault are
very low. The waste disposal stratum is located
about 600m below the ground surface and the
type of stratum generally chosen is rock salt to
prevent the intrusion of the ground water.

The waste repository is composed of parallel
disposal tunnels for the emplacement of waste
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and shafts for the linkage to the ground surface.
On the ground of the disposal tunnel, many
vertical holes are drilled for the disposal of high
level waste canisters. The space between the wall
of the hole and the canister is packed with
backfill materials such as bentonite, zeolite, etc.
After the canisters are put in all the holes in
the tunnels, the disposal tunnels are packed with
buffer material such as a mixture of quartz sand
and bentonite, etc. When the entire repository
is filled, the shaft and other spaces are also
packed with the same buffer materials.

The underground radioactive waste repository
consists of five barriers to isolate the high-level
radioactive waste from the biosphere.

1) barrier A: host rock (rock salt or crystalline

rock, etc.) _

2) barrier B: waste canister (Ti-Pb container)

3) barrier C: waste glass (borosilicate glass)

4) barrier D: backfill (bentonite)

5) barrier E: geological structure between re-

pository and biosphere (granite)

At the beginning of the release, host rock
(barrier A) where the waste repository is loca-
ted, is failed by artificial or natural events
(drilling, earthquake, brine migration, etc.) and
some groundwater in the geological stratum
surrounding the host rock intrudes into the waste
repository. The space between the host rock and
the wall of the waste canister is filled with
backfill materials such as bentonite. After the
saturation of backfill with groundwater, ground-
water contacts with and corrodes the waste
canister (barrier B). As corrosion proceeds,
ground water will eventually come into contact
High level

waste glass is a homogeneous glass so-called

with the waste glass (barrier C).

“borosilicate.” In case of long contact with
groundwater, the waste glass is leached out at a
very slow rate. The nuclides leached from the
waste glass are retarded for a considerable period

by adsorption as they pass through the backfill

(barrier D), After passing through backfill, this
groundwater reaches the ground surface or sur-
face water through geological structure (barrier
E), while the radioactive nuclides along the
same path but are retarded by adsorption.
3.3. Reliability and Risk Assessment Model
In the system in continuous operation without
repair, the failure probability density f(¢) is [32]

FEO=2(exp(— f ;).(t’)dt’] 3. 1)
~and the mean-time-to-failure (MTTF) is
MTTF= f :t FO)dt, (3.2

where

A(t)=hazard rate or conditional failure rate.
If the failure of the system occurs randomly,
then

A()=1, (3.3
SF(®)=2 exp(—ar), 3.4
MTTF=1/2 (3.5)

For the system in which components are
sequential in operation in such a way that the
only one unit of the system is in operation at
a time [32],

fuys(t>=f;f1<t1)f:lf2(tz—t1) ......

f :,,_,f N-1 (-1 —tv-) fn(E—tn-1)

dtN_ldtN_z" dtl (3- 6)
If the hazard rate is assumed conmstant in

time, then

N N —~2;
Fos®O=MI, —5——. G.D

=R G-
j=i
The risk from the radioactivity release from
the waste repository can be represented by
Ry(£)=A:(8) fsys(®)
=A,(0) exp(—b)fsys(t), (3.8)
where
R.(¢) =probable release rate of radioactive
nuclide % at time ¢ (Ci/yr),
Ay(0) =2k Ng(0)==initial activity of the
nuclide & (C7),
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N:(0) =inventory of the nuclide % at time
t=0, when the waste is disposed
of in the disposal site,

2 =decay constant of the nuclide %
(/3.

3.4. Failure Probability of Each Barrier

As described in the previous sections, only
risks due to transportation and release of radioac-
tive nuclides to biosphere by the groundwater
are considered. The waste repository is consi-
dered as a system in continuous operation,
whereby five units are in a sequential operation
mode. At first, we consider the reliabilities of the
single barrier. In the second step, we consider
the overall reliabilities of the waste repository
using the reliability of the single barrier.

Barrier A (Host Rock)

The failure of barrier A means the intrusion
of the groundwater that exists in the aquifer
above or below the host rocks, to the backfill
between host rock and waste canister through
the host rock. This failure is due to many di-
fferent causes, for example, undetected borehole,
fracture, etc. Such phenomena will be likely to
occur randomly. The overall MTTF is to be
determined based on experience and geological
knowledge. In many studies, it was assumed for
groundwater in the aquifer to intrude into the
waste repository after a period varying between
10 and 1,000 yrs [33,36].

Barrier B (Waste Canister)

After barrier A is failed, the groundwater
contacts with the waste canister. The failure of
the waste canister is mainly due to the corrosion
of the canister material by the groundwater.
The waste canisters are largely titanium-lead
containers. Many corrosion studies showed that
the life time of titanium alloys is 300~3, 000
years. [34, 39]

Barrier C (Waste Glass)

Failure of barrier C means leaching of radioa-
ctive material in waste glass. The leaching pro-

cess is dominated by the dissolution of waste
glass and it is a function of the amount in con-
tact with groundwater, the leaching rate, and
the surface-to-volume ratio of the solid [37].
Then, the MTTF of barrier C in cylindrical

form can be represented as follows [2,3].

MTTFc:mL0 f ;“t (%) dt

= f o2 () [1-5) e

tm
== 3.9

where
my=initial mass of waste glass,
tn =total dissolution time of waste glass.
It is reported that the total dissolution time of
borosilicate glass is about 10, 000~100, 000 years
[39].

Barrier D (Backfill)

Backfill acts as a barrier in two manners:
namely, to prevent groundwater intrusion into
the waste canister when the failure of barrier
A occurs, and to retard radionuclide migration
when the leaching of the waste glass occurs.

In the former case, for a backfill thickness of
0.25m, if the waste repository is located at the
depth of 1,000m underground, the maximum
time for water to saturate the backfill will be
about 20 years [35]. This is much shorter than
the time scale used in the other barriers. Accor-
dingly this function is neglected here.

In the latter case, it is reported that a porous
backfill should have low permeability enough to
prevent transport of radionuclides by the bulk
fluid flow, and the transport of water will be
controlled by diffusion through the pore, pro-
vided that the physical integrity of the backfill
is maintained [35,38]. In the case of diffusion
of radionuclides through the backfill, modified
Fick’s second law is applied with the assumption
of infinite diffusion medium [35].

X _ ()T
ot Kpr oxz’

(3.10)
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where
D =diffusivity=10"m?/sec,
t =tortuosity factor=1,
X =distance (=0. 25m,
ckfilD),
Ky—=retardation factor of each nuclide,

thickness of ba-

C =nuclide concentration.
With following bouudary conditions and initial
condition,

C(0,t)=Cy, C(oo0,t)=0, C(x,0)=0
the solution to Eq. (3.10) is then

C=C, er fc[ Z(_DI_(_—t)v“;] .

Kyt

Therefore, the diffusion time of radionuclide, 24,

(3°11)

which is defined as the time that radionuclides
pass through the backfill, is mainly a function
of retardation factor. The MTTF of barrier D
can be represented by [2].
MTTFp=ts/2=Kg/8.
Barrier E (Geological Structure)

3.12)

The radioactive nuclides released from the
waste repository are transported through geolo-
gical structure by means of groundwater and
released to the biosphere. Many studies [33, 40,
41] assume that ground water reaches a river
or a lake after 200~2000 years while the radioac-
tive material migrates along the same path but
is retarded by adsorption process. Also it is
assumed that radioactive nuclides are only reta-
rded but undiminished by chemical process. The
failure mechanism of the barrier £ can be
assumed random failure and MTTF is represen-
ted by the mean migration time of nuclides as
follows [2, 3]

MTTF:=K;Ty, (3.13)
where
Tw=travel time of groundwater=200~

2,000 years,
Ky =retardation factor for each nuclide.
3.5. Radionuclide Inventory in Waste Reposi-
tory
The radionuclide inventories in high level

waste disposed in the waste repository are varied
with the time duration after burial. These in-
ventories can be calculated as a function of time
after the removal of fuel from the reactor.
These calculations were carried out by the use
of ORIGEN code [42]. The reactor parameters
used in these calculations are as follows: uran-
ium enrichment of a fuel, 3. 29 U-235, average
power 30MW/MT, exposed time 1,100 days. It
is assumed that spent fuel is reprocessed 160
days after removal from the reactor. The proba-
ble release rate of the radionuclides are calculated
based on 10 PWRs with 1, 000MW and 40 years
of operation. Assuming 30 tons of spent fuel
per reactor year, the inventory amounts to 12,
000 ton Uranium. This corresponds to a reposi-
tory with roughly 5,000 waste canisters.
3.6. Results and Discussions

In the assessment of the risk from the high
level radioactive repository, the MTTF of each
barrier is decided to be fundamental parameters
which have uncertainties. The uncertainty ranges
of input parameters obtained from various reports
are shown in Table 3.1 and 3. 2. The important
nuclides for ingestion are considered in this study
and they are listed in Table 3.2 with their half
lives, initial inventories, and ratardation factors.
In the calculation, all the parameters are assumed
to have ‘loguniform’ distributions because the
ranges spread in order-of-magnitudes. The assu-
mption of loguniform distribution gives more
conservative results than that lognormal distri-
bution which is usually used in reliability assess-
ments of nuclear power plants. The transfor-
mation of original independent variable X; logari-

thmically based on 10 results in uniform distri-
bution.

X/ =log(X)~U, G140
X/-X/
Zi:_-AX—,,I—— NU('——l, 1)7 (3- 15)
where

X;’=logarithmically transformed variable of
X;
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Z; =normalized variable of X,
U(a, b) =uniform distribution between a and
b.
The output variable Y is also transformed loga-
rithmically because it is expected that Y also
spreads in order-of-magnitudes. Use of logari-

thmic transformation reduces nonlinear effect
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Table 3.1. Uncertainty Range of Input Par-

ameters
Parameter ' Uncertainty Range
X; (MTTFy) ‘ 1E+1~ 1E+3 yr
X (MTTFs) 3E+2~ 3E+43 yr
X: (MTTF) 3.3E+3~3.3E+4 yr

X X5

in Table 3.2

Table 3.2. Initial Activity, Half Life, and Retardation Factors for Barrier D and E of Each Nuclide

.. .. . X4=KR (Barrier
. Initial Activity Half Life 4 KR Xs=TW. KR
Nuclide ) o) D) _Grare (Barrier E) | (MTTF») (yr)
Sr-90 3.387E+4 29 1E+3~2E+3 2E+1~1E+2 " 4E+3~2E+5
Tec-99 5.376E +4 2.13E+5 1E+0~1E+2 1E+0~1E+1 “ 2E+2~2E+4
Cs-137 4. 010E +4 30. 14 1E+2~1E 44 1E42~1E+3 ’ 2E-++4~2E+6
Ra-226 3.960E—3 4.50E+9 1E+3~2E+3 3E+2~1E+3 i 6E+4~2E+6
Np-237 1.320E+3 2.10E+6 2E+2~8E +2 1E+2~3E+2 ’ 2E+4~6E+5
Pu-240 3.116E+4 6, 500 2E+3~5E+3 3E+2~1E+3 | 6E+4~2E+6
Am-241 6.000E +5 430 1E+4~2E+4 1E+3~1E+5 , 2E+5~2E+8
and thus the result can be interpreted in linear
base.
-1 T T T The FAST results for Sr-90 are shown in
L sr-g90 . Fig. 3-1 with the mean and the most extreme
L i output values. The results are in gocd agreement
B i e ] 100 r r T
> /" max
b -5 r s \. . Sr-90
5 - 4 P l‘"« . 80 } /3
" A | ~ /
;f ot I!I},-' ‘{_.,f‘ mean 4 I '.'I B ;5 /»/
< ‘ m ] i 9 xs
ﬁ - ; ¢ '-\“\ ||'I [|| § 60 J'_'/ ]
(R AR 1 &
4 mLn | '1| | ~ X1
el 2 ¢ Wb - P ———
g t T wf |
R o i . N T
3 il “ T
g 5 ¥ 1 X3
-13 | ‘1 i 4 20 F j}«.-/ S
: i Il
- | | . — Nt X2
/ } I X4 So .
15 ¢ L = o o + + f e
10° 10t 107 10° ot 10Y 10t 102 10° 10t

time (yr)

Fig. 3.1. Probable Release Rate of Sr-90 Estima-
ted by FAST

time {yr)
Fig. 3.2. Partial Variance of Each Input Para-
meter for Sr-90 Estimated by FAST
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with those estimated by the Monte cario Method
of sampling size 2000, which is not shown in the
figure, The required number of function evalua-
tions in FAST is 79 for five parameter case as
shown in Table 2-3. The resulss for the other
nuclides are shown in Appendix. The probable
release rates of each nuclide are distributed in
three to six order-of-magnitudes during genera-
ting period (the time duration in which reledse
rates are increasing) depending on the uncer-
tainty ranges of input parameters. For long lived,
nuclides, such as Tc-99, Np-237, and Ra-226,

however, the probable release rates are rather

widely distributed during decaying period after
about 10¢ years. This is mainly due to the long
MTTF of barrier E. The results reveal that log
(Y) to be nearly normally distributed during
generating period. This gives the justification
that logarithmic transformation can be used in
case that the variables are distributed in order-
of-magnitudes. And the resulting normal distri-
bution can be expected from Central Limit Theo-
rem [43]. The time dependent partial variances
for input parameters estimated by FAST are
shown in Fig. 3-2. This figure explains the

uncertainty contributions of each parameter. The

Table 3-3. Normalized Latin Hypercube Sampling Points and OQutput Values for Sr-90 at 10yr

Run No. 71 z2 \ Z3 74 Z5 v

1 0. 414 ~0. 894 ‘ —0.633 —0. 880 —0. 824 —7.480

2 0.475 0.016 —0. 062 —0.766 —0. 206 —8.821

3 ~0. 870 —0. 640 0.819 0. 347 0. 250 —8. 200

4 0.918 0.883 0. 159 0. 060 —0, 282 —9.863

5 —0.513 0.173 i 0. 240 —0,142 —0. 100 8. 270

6 0. 396 0. 230 0. 064 0. 246 —0, 458 —8. 847

7 0.703 —0.700 —0. 343 —0.234 —0. 641 —8.259

8 0. 655 —0.386 | 0. 949 —0.958 —0.909 —8.678

9 ~0,582 ~0.741 0. 095 0.190 0.522 —8.255
10 —0.814 —0.158 —0.132 0.591 —0.149 —7.711
11 —0.161 —0,104 ~0.756 0.124 0. 288 —8.339
12 —0.325 ~—0. 806 —0. 459 —0.080 0. 387 —8.033
13 —0. 666 0.543 0.897 —0, 417 0.195 —8.850
14 —0,703 —0. 542 0. 608 —0.313 —0.549 —7.515
15 —0. 374 ~0.471 —0.927 0. 300 0.653 —8.201
16 0. 041 0. 824 0.572 —0. 362 —0.395 —9.011
17 0.199 0. 300 0. 327 0. 902 0. 889 —10. 062
18 0.821 0. 414 0.773 —0.553 0. 697 —10.580
19 —0.421 0.118 | —0. 286 —0. 499 —0.032 —8. 071
20 0. 996 —0.981 | —0.846 0. 608 —0.674 —8. 258
21 —0. 048 0.795 | 0.527 0.787 0.858 —10.122
22 0.735 —0, 036 l 0. 438 0.972 —0. 951 —8.929
23 —0. 961 0.522 | 0.338 —0. 691 0.131 —8.206
24 —0.211 0. 656 —0.588 —0. 064 0. 557 —8.954
25 —0.127 0. 952 —0.218 0. 681 0. 064 —9. 061
26 —0.780 —0.274 | —0.975 0.412 —0.475 —6.959
27 0.265 0. 395 —0.157 0. 486 —0.766 —8. 464
28 0.501 —0. 427 —0. 690 —0. 617 0. 953 —9, 407
29 0.313 —0.236 —0.508 —0.858 0.769 —9.126
30 0. 072 0.712 | 0.719 0. 864 0. 461 —9,969
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Table 3-4. Results of Stepwise Regression Analysis for Sr-90 at 10yr

Step Selected Variables gggfrif:iségltls R? Partial F Critical F

1st —8.675

Z2 —0. 890 0.375 16.8 2.89
2nd —8.675

Z2 —0.896

Z1 —0.734 0. 635 19,2 2.90
3rd 8. 675

Z2 —0.736

Z1 —-0.913

Z5 —0.776 0.895 64. 6 2.91
4th —8.675

Z2 —0.529

Z1 —0. 956

Z5 —0.844

Z3 —0. 489 0. 990 238. 2.92

MTTF of barrier A (Z1) prevails initially while
MTTF of barrier E (Z5) later.

Next, Latin hypercube sampling and stepwise
regression is performed sequentially. The nor-
malized Latin hypercube sampling points (Z))
are shown in Table 3-3 with their resulting
output value, the probable release rate of Sr-90
at time 10yr. The sequential results of stepwise
regression analysis are shown in Table 3-4. Z2,
Z1, Z5, and Z3 are sequentially selected at each
step. This is a little different from the results
estimated by FAST as shown in Fig. 3-2. Ho-
wever, the orders of standardized regression
coefficients (B;) become the same as the partial
variances of FAST as step goes on. The major
merit of FAST method is that it can estimate
the sensitivities of each input parameter in the
sense of variance, whereas it can not be detected
by the Monte Carlo Method.

It can be concluded that FAST is a good
method because it gives partial variance of each
input parameter, which can be considered as
global sensitivity measure, as well as total vari-

ance with moderate computing cost compared to

Crude Monte Carlo method. Latin hypercube
sampling plus stepwise regression procedure gives
an alternative tool for uncertainty and sensitivity
analysis. Although the test results are not shown
in this paper, it is turned out that the Experi-
mental Design plus Response Surface Method is
good in case that there is no high nonlinearity
in the interested region of input parameter space
[44], Among the methods introduced in section
2, any other combination is possible. The use of
any combination can be changed from case to
case depending on the nature of the system to
be analyzed.

The SPUSA package is expected to be a
useful tool for structural analysis of a newly

developed uncertain system models.
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