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Abstracts

A statistical procedure, which uses response surface method and Monte Carlo simulation technique,
is proposed for analyzing the thermal margin of light water reactor core. The statistical thermal
margin analysis method performs the best-estimate thermal margin evaluation by the probabilistic
treatment of uncertainties of input parameters. This methodology is applied to KNU-1 core thermal
margin analysis under the steady state nominal operating condition. Also discussed are the com-
parisons with conventional deterministic method and Improved Thermal Design Procedure of
Westinghouse.

It is deduced from this study that the response surface method is useful for performing the
statistical thermal margin analysis and that thermal margin improvement is assured through this

procedure.
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I. Introduction

The thermal hydraulic design of light water
reactor should be accomplished with an appro-
priate thermal marin to prevent the core from
the unexpected transient power overshooting,
hence to ensure safe operation. On the other
hand, it is also important to provide the core
with the operational flexibility and to reduce
the possibility of spurious reactor trips at the
point of view of utility’s cost loss.

Conventional thermal hydraulic design appro-
ach has been performed in the conservative way.
Since the operation and design parameters’
uncertainties are considered simultanelousy, there
can be no more margins if design changes
oceur. V,?

Some probabilistic approaches have been deve-
loped to quantify more realistic thermal margin
by statistically combining the parametric uncer-
tainties while satisfying the DNB design basis.
Some problems, however, occur in the adoption
of probabilistic design approach in the following
aspects.

(1) the functional relationships between the
outputs and input parameters may mnot be
explicitly known.

(2) computer codes are long running.

(3) the number of input variables is large.

Therefore, the evaluation of the wuncertainty
distribution of output variable, which is a major
concern, is much complicated and time consuming
task. .

In this regard, a statistical thermal margin
analysis method is proposed in this paper, which
uses experimental design tchnique¥s* and res-
ponse surface method?:®.% to consider the
parametric uncertainties in a reasonable way.
The procedure taken in this method is as follows;

(1) Input parameters important to DNBR are
slected.
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Fig. 1. Schematic Diagram of Statistical Thermal
Margin Analysis Procedure

(2) Experimental design technique is used to
generate design points more systematically.

(3) DNBR response is calculated by COBRA-
IV computer code” for each design point selected
according to the above steps.

(4) Response surface which approximates the
functional relationship between DNBR and input
parameters is obtained by a regression technique.

(56) Uncertainty distribution of DNBR is
estimated through the direct application of Monte
Carlo method to the response surface obtained.

Figure 1 shows this procedure schematically.
The purpose of this study is to use this statis-
tical procedure for the analysis of thermal margin
gain of KNU-] reactor core against the conven-
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tional deterministic design approach and to
discuss the differences and merits of this proce-
dure against the Improved Thermal Design
Procedure (ITDP) of Westinghouse.®

I1. Description of Response Surface Method

I1.1. Basic Concept
When the output variable, y is a complex
function of a number of input parameters x;
(=12,...,k), say,
y=f (1, T3, ore, T1) ey
the input-output relationship is approximated in
the form of polynomial regression as

k
y=bo+ > b;z; (Ilst order regression) @
i=1

or
k

B &
y=bo+ glbixi—f‘ o Lbizix;

i=1 j=i
(2nd order regression) 6)

where,

_zi—z°
== €Y

=coded value or level,

z;=real value,
2z?=nominal value,

g;=standard deviation.

The term response surface refers to the geome-
tric interpretation of a function of several
independent variables. If the functional rela-
tionship is not highly nonlinear in the region
of z’s, then first order regression equation can
be wused. Otherwise second or higher order
regression equation will fit the relationship
reasonably. Sometimes in case that nonlinearity
is obvious in the wide range of dependent
variables, the first order model can be used in
the narrow interested region of independent
variables, too.

II. 2. Experimental Design®,%

There are several methods in designing

experiments to establish a set of sampling points

in the space of the z’s, at which y will be
observed. The most commons of these are two
level factorial design, three level factorial design,
and central composite design, which are discussed
in this paper.

Two level factorial design utilizes two levels
of 2’s (coded values of+1). When the number
of factors (here, number of input parameters)
are k, the required number of code runs are 2%
for the full (complete) factorial design and 2%~
for fractional factorial design, where 2¢ is the
fraction needed to reduce the required run
numbers. In the fractional factorial design, 2—p
parameters are combined completely but remaining
p parameters are composed of product of already
defined k—p parameter levels. Obviously, the
higher the degree of fraction is, the less is the
degree of resolution in analyzing the lower order
effects (main or cross-term effects) compared to
the higher order interaction effects.

Three level full factorial and fractional fac-
torial design is the same as the two level design
except that they use three level of z’s (—1,0,
+1). But in these designs the number of runs
is increasing more rapidly than two level design.

In central composite design, however, three
distinct portions are included; (1) two level
factorial points, (2) two axial points for each
parameter, (3) one center point. Fig. 2 illustrates
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Fig. 2. Central Composite Design Points for
Two Factors.
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Table 1. Comparison of the Number of Unknowns and Code Runs between the Experimental Designs

No. of 1st Order Regression 2nd Order Regression
Parameters| No. of No. of Runs *No. of No. of Runs
k Unknown 2k o2k Unknown 3% i 3k f Central Composite**
3 4 8 Pi=4 | 10 27 8+6+1=15
4 5 16 PARCEIR 15 81 3t t= 27 16+8+1=25
5 6 32 25-1=16 21 243 3%1= 8] 32+10+1=43
7 8 128 211=64 36 2187 371=729 128+14+1=143
21-2=32 32=243
27-8=16 33= g1
2= g
* 2k+kCy+1
% ok 2k+1

these design points for two factors, where ‘@’ is
an arbitrary coded value.

Among the above mentioned types of experi-
mental design, the two level factorial and central
composite designs are commonly used for res-
ponse surface work. The reason is that the
former can be used to fit first order polynomial
with minimum number of code runs, while the
latter is suitable for fitting the second order
polynomial. The major advantage of central
composite design is utilizing the information of
two level design to consider the mnonlinearity
with a few additional data points in case the
linear model is not appropriate.

Table 1 shows the comparison of the number
of unknowns and code runs required for these
experimental design methods. It is obvious that
the central composite design needs relatively few
number of runs compared to the three level
factorial design.

I1.3. Estimation of Response Surface
Coeflicients

The method of least square is used to estimate
the coefficients of the response surface equation.

Eq. 2 or 3 can be represented by matrix form
as

y=Xb+7¢

where,

%)

y=mx 1 observed data vector,

X=mxn experimental design matrix,

B=nx1 regression coefficient vector,
€=mX ] error vecctor, i.e., the difference
between observed data and estimated

value
Least square method estimates & such that the
sum of squares of the error becomes minimum.
L=¢Te=(y—-X0)"(y—Xb) (6
Setting the partial derivative of L with respect
to b be zero, then

=(X"X)1XTy. N
In Eq. 5, the design matrix X contains the
first column whose elements are only 1s. If first
order regression model is used, then the order
of design matrix X is a=k+1 and (XTX)-!
becomes 1/n, where k=number of parameters.
Thus, the computation is very simple. In case
of second order regression model, X must be
augmented to inciude the quadratic and cross
terms x;z;. In this case the use of computer is

inevitable to perform the matrix inversion.

III. Implementation to Thermal Margin
Analysis

II1.1. Variable Selection and Uncertainty
Distribution
Sensitivity studies of DNBR to the core
thermal hydraulics design and operating para-
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Table 2. Mean, Standard Deviation, and Uncertainty Distribution Type of Parameters

Variable No. Parameter Mean Standard Deviation ggﬁfﬁgﬁi
z1 Core Inlet Temp. (°F) 541.2 2.31 Uniform
z2 Core Power (% of RTP) 100 1.15 Uniform
23 Fay (—) 1.435 4.28%x10°2 Normal
24 Core Tnlet Flow(10°12=_) 2.45 0.1144 Normal
25 System Pressure (psia) 2280 17.32 Uniform

meters have been performed for the KNU-1
reactor core to identify the importance of the
input variables.?,?

Five parameters selected important to DNB
are; core inlet temperature, core power, enthalpy
rise hot channel factor, core inlet flow, and the
system pressure, whose uncertainties are to be
statistically combined. The values of mean,
standard deviation and their uncertainty dis-
tribution types are shown in Table 2. In this
Table, the enthalpy rise hot channel factor
incorporates both the nuclear(FJy) and the en-
gineering factor (F5y). The core inlet flow is
determined by subtracting the core bypass flow
fraction from the best-estimated primary coolant
flow. The nominal bypass fraction of 2.7% is
assumed for the core inlet flow. Therefore, the
standard deviations for these variables are added
for each component’s standard deviation. The
other values are extracted from reference 8.

III. 2. Building Response Surface Model

The core subchannel analysis computer code,
COBRA-IV, is used to generate DNBR values
according to the experimental design plans for
the prescribed five statistical parameters. Two
types of experimental design methods are
employed for a comparative purpose of obtaining
the response surface coefficients. These are the
two level fractional factorial design (25-1) and
the central composite design as discussed in
section IL

The 25! design requires sixteen design points,
the levels of which are listed in Table 3 together

with their DNBR responses calculated by

Table 3. Factorial Design Points (25-!) with
DNBR Responses

21 | 22 | @3 | x| a5 | DNBR
1 1 1 1 1| 2734
—1 1 1 1| -1 | 262
1| =1 1 1| —1 | 26%
-1 | =1 1 1 1| 2582
1 1| -1 1] —1 | 2506
-1 1| -1 1 1| 2472
1| -1 | -1 1 1| 2463
-1 -1 -1 1| =1 2366
1 1 1 =1 | =11 2900
-1 1 1| -1 2,855
1] -1 1| =1 2. 854
-1 | -1 1] =1 -1 2709
1 1| -1 -1 1| 278
-1 1] =1 =1 ! =11 2617
1| -1 | =1] =1 =-1| 267
-1 ] =1 -1] -1 1| 2575

Table 4. Axial and Central Design Points with
DNBR Responses

zl 2 z3 ‘ z4 j z5 { DNBR
2 0 0 0 0| 2563
—2 0 0 0 0| 2714
0 2 0 0 0 | 2564
0| -2 0 0 0 2.717
0 0 2 0 0 | 2.450
0 0| -2 0 0 | 2.8
0 0 0 2 0 | 2.8
0 0 0o -2 0 | 2.455
0 0 0 0 2 | 2672
0 0 0 0| —2 | 2606
0 0 0 0 0 | 2.639

COBRA-IV. The central composite design con-
sists of sixteen factorial points, two axial points
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Table 5. Response Surface Model for KNU-1
Steady State Nominal DNBR

Regression Coefficients
b Variale

1st Order 2nd Order
b0 1 2. 6413 2. 6402
bl xl —3.7125-2 —3.7333-2
b2 x2 —3.8625-2 —3. 8500~-2
53 z3 —9. 8250-2 —9. 87560-2
b4 x4 9.4375-2 9. 4083-2
b5 zb 1. 66256-2 1. 6583-2
511 (x1)? —b5. 8333-4
522 (x2)? —8.3333-5
533 (x3)? 2.1667-3
b44 (z4)* 2.9167-4
555 (z5)? —4.5833-4
512 xl x2 0.0
513 xl x3 1. 6250-3
b14 xrl x4 —2.0000-3
515 xl xb 2.5000-4
523 x2 x3 8.7500-4
524 x2 x4 —7.5000-4
525 x2 x5 —7.5000-4
534 z3 x4 —3.1250-3
535 x3 zb —1. 2500-4
b45 x4 x5 7.5000-4

per each variable, and one center point. The
axial and center points along with their DNBR
responses are shown in Table 4. The central
composite design thus requires data points of
both Table 3 and Table 4 (i.e. 27 points) where
-+2 means two standard deviation.

The number of unknowns of response surface
coefficients, B, for 25-1 design and central com-
posite design are six and twenty-one respectively
as shown in Table 1. The values of 7 for these
two design methods are determined by the Eq.
7 and the results are compared in Table 5. The
first order response surface coefficients show good
agreement with the main effect terms of the
second order regression coefficients. Also indicated
from Table 5 is that the effects of the quadratic
and the interaction terms in the second order
polynomial are relatively small compared to the
main effect terms. Hence, it is reasonable, for

the sake of calculational simplicity in the Monte
Carlo simulation, to use the first order regression
polynomial as the DNBR response surface model
for this study. The response surface model can
be represented by the following analytical
approximation:
y=2.6413—3.7125X 10722,
—3. 8625 X 10722, —9. 8250 X 10~ %z,
49,4375 X 1072z, +1. 6625 x 107225 (8)
Replacing Eq. 8 with Eq. 4 gives an alternative
expression for DNBR response as
y=13.7824—1.6071%x107%2;
—3. 3587 X 10~ %2, — 2. 295623 0. 82502,
+9. 5987 X 10™*25 €))
The above equation is the final form of fast
running approximation to be used in the Monte
Carlo calculation, which is discussed in the
following section.

Eq. 9 can also be used for sensitivity study
of input variables. Investigated are DNBR
sensitivity factors, S;, which are defined as the
percent variation of DNBR due to percent
variation in input variables, i.e.

. 1] 0
S Bl g = (10)

T2z T Ty

where,

a;,=coefficients in Eq. 9
¥°=2.6413 (nominal DNBR) from Eq. 8
z?=nominal value of parameter.
DNBR sensitivity factors as calculated by this
response surface model are listed in Table 6
together with the values in reference 1, which

Table 6. DNBR Sensitivity Factors Determined
by First Order Response Surface Model

Sensitivity Factor (%/%)

|
Faremeter llst Order RSM| Valucs in
Core Inlet Temp. —3.29 \ —4.03
Core Power —1.25 | —1.69
Fu —1.25 | —1.65
Core Inlet Flow | 0.76 [ 0.79
System Pressure 0.83 I 0.87
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was done by one-at-a-time calculation. The
importance ranking is in good agreement between
these two methods. Note that the a; values
here are obtained as the averaged concept in
the uncertainty range of the input parameters,
because these parameters are varied simultan-
eously on the base of experimental design and
response surface method.
IIL. 3. Monte Carlo Analysis

Monte Carlo analysis is a method used for
propagating the uncertainty distributions through
a function. The objective of the Monte Carlo
simulation in this study is to predict DNBR
uncertainty distribution caused by input variable
uncertainties using response surface model esta-
blished in the previous section.

Obtaining the statistical distribution of DNBR
leads to the determination of limit value for
nominal DNBR which satisfies the DNB design
criteria. In this study, the Monte Carlo statistical
analysis program, MOCUP,? is used.

CIIf correlation

)
)

—i

/7
P, V) ~

2.476 (950/95%)

Fig. 3. DNBR Uncertainty Distribution
(KNU-1 Core)

The calculational process of MOCUP is as
follows;

(1) Generation of random values of input
variables according to the given uncertainty
distribution in Table 2.

(2) Use of response surface model to calculate
DNBR values with the random input data.

(3) Estimation of DNBR uncertainty distribu-
tion from the sample DNBR data.

1200 Monte Carlo trials are conducted to pro-
duce a sample DNBRs. From this sample, the
median and the standard deviation values of

) ] ,
1}o 13 i
! I
| i
] |
| !
| Pixed Method DNBR i
Fixed Value Method | &% G o - e
—f& -
l thermal margin compounded uncertainty
2.09 [,
]
| |
|
|
' ITOP, limit '
7/l - 95% probability oninal ouen
Improved Termal ::
Design procedure thermal margin 2.641
uncertaint;
|
] |
' '
' Nowinal DM 954/95%
limit
A,
Response Surface K .
Method [ thermal margin parametric
1.0 1.3 uncertainty
2.476 2.641

Fig. 4. Comparison of Thermal Margins for Three Different Thermal Design Methods.
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DNBR are estimated for the KNU-1 reactor core
The
median value of DNBR is 2. 641 and its variance
is 9. 6595x107%,
at the 95% probablity is 2. 481. The limit value
of DNBR is then selected by considering the
tolerance of MDNBR itself additional on the
95% confidence basis. This gives limit DNBR
value of 2,476 as Eq. 1.

2.481—1. 6450/ /7 =2, 476 an
where, o—=population standard deviation

under steady state nominal conditions.

The one-side lower limit value

~~square root of sample variance
n=number of sampling=1200

1. 645=one-side 95% point of standard
normal distribution.

Figure 3 shows the schematic of DNBR dist-

ribution curve for this case.
II1. 4. Results and Discussions

The statistical analysis of thermal margin is
performed for the KNU-1 reactor core under
steady state nominal condition using response
surface methodology and Monte Carlo simulation.

In this study,
statistically and the remaining variables are held
COBRA-IV computer

program calculates DNBR values according to

five parameters are treated

at their fixed values.

Table 7. ITDP Limit DNBR and Parametric Uncertainty Calculation

2
X; i ] i i Y S; N L
# 7 ( s > ( s ) ! $ ( s )
Tin 541. 2 2.31 0. 00427 1.822-5 —4.03% 16. 2409 2.9591-4
—5.68@ 32. 2624 5. 8782-4
—b5.52@ 30. 4704 5. 5b52-4
Power 100 1.15 0.0115 1. 3225-4 —1.69 2. 8561 3.7772-4
—2.27 5. 1529 6. 8147-4
—1.87 3. 4969 4. 6246-4
Gin i 2.45 0.1144 0. 04669 2. 1803-3 0.79 0. 6241 1. 3607-3
0.87 0. 7569 1.6503~3
0.75 0. 6625 1. 2264-3
Fuy 1. 435 4.28-2 0. 029825 8. 8958-4 —1.65 2.7225 2.4219-3
—2.16 4. 6656 4. 1504-3
—1.40 1. 9600 1.7436-3
Press 2,280 17. 32 0. 007596 5.7707-5 0.87 0. 7569 4. 3678-5
0.85 0.7225 4.1693-5
1. 44 2.0736 1. 1966-4
( ay >2(4) ( oy ) #y —1.6450, ITDP LIIm;t DNBI?*) ITDP Parametric'®
2ty Ly #5=0.995® <m) Uncertainty (*)—1.3
4.4999-3 0. 06708 0. 8852 1. 467 0.167
7.1117-3 0. 08433 0. 8570 1.517 0.217
4.1076-3 0. 06409 0. 8901 1. 461 0. 161

Note (1) ref. 1: p. 246
(2) ref. 2: p.156
(3) WCAP-8567 (ITDP): p.4-21

@ (o) =psy(40)

(5) WCAP-8567: p. 4-23

(6) cf. RSM parametric uncertainty:

2.641—2. 476=0. 1656
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the experimental design plans. The response
surface coefficients are obtained using the least
square method. Calculated results for DNBR
uncertainty distribution indicate the limit value
of nominal DNBR of 2.476. on the 95%
probability/95% confidence basis.

Now that the minimum DNBR employing
deterministic approach (fixed value method
DNBR) is determined to be 2.09, the gain in
DNBR is 0. 39. Figure 4 shows the implications
of thermal margin gain in this method against
the conventional method. DNBR margin gain
through statistical design is the quantity of
uncertainty reduction compared to the fixed
value method. Also shown in figure 4 is the
relationship between thermal margin and uncer-
tainties for the three different thermal design
methods: Fixed value method, Improved thermal
design procedure (ITDP),® Response surface
method (RSM). Of these methods, both ITDP
and RSM consider the parametric uncertainties
in a statistical manner. But the fundamental
difference between the two methods is that ITDP
adopts the Central Limit Theorem and establishes
the DNBR design limit based on the CHF
(critical heat flux) correlation limit, while RSM
constructs response surface based on the experi-
mental design technique and utilizes Monte Carlo
simulation to define the limit value of nominal
DNBR.

=
<-

(1) ITDP Parametric Uncertainty for small S; case
(2) ITDP Parametric Uncertainty for large S; case
(3) RSM Parametric Uncertainty (best-estimate)

Fig. 5. Comparison of ITDP and RSM Param-
etric Uncertainty Distributions

242 factorial design is regarded as a good
tool to contruct the response surface model
because it needs comparatively lower runs but
it treats the parametric uncertainty systemat-
ically. And the sensitivity coefficients obtained
from this are more realistic because it is obtained
as an averaged concept in the uncertainty range
of the input parameters. Another merit of this
procedure is that it considers 95% confidence
level additionally while ITDP considers 95%
probability only under the assumption of normal
distribution of resulting DNBR through the
Central Limit Theorem.

Table 7 shows ITDP limit DNBR and para-
metric uncertainties for three different sensitivity
coefficients extracted from references 1,2, and
8, respectively. Resulting parametric uncert-
ainties are 0. 167, 0.217, and 0. 161,
itvely compared to 0. 165 of RSM. The important
one to be pointed in this calculation is that the

respec-

ITDP limit DNBR or parametric uncertainty is
highly dependent on the sensitivity coefficients
generated, but RSM is robust in this point of
view. Figure 5 illustrates this point well.
When small S/s are used in the ITDP the
resulting thermal margin is not conservative
while not realistic for large S; case. The
robustness of RSM compensates for the addi-
tional computational effort (Monte Carlo simu-

_lation) .

IV. ‘Conclusion and Recommendation

Some conclusions are developed from this
study:

(1) RSM is a useful method in performing
statistical thermal margin analysis.

(2) Two level factorial design is a valuable
method for investigating the sensitivities of input
parameters, while the central composite design
is good enough for fitting the second order
polynomial.
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(3) KNU-1 Reactor core thermal margin is
increased using RSM and the obtaind DNBR
gain over Fixed Value Method is 0. 39 for steady
state nominal operating condition.

(4) Future application of RSM can be extended
to the statistical reactor safety analysis during
transients and accidents.

(5) When ITDP is used to analyze the sta-
tistical thermal margin, much attention is needed
due to the highly-dependence on sensitivity
coeflicients.
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