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Abstract

The reduction of the truncation error including numerical diffusion, has been one of the most
important tasks in the development of numerical methods. The stream line method is used to cancel
cross numerical diffusion and some of the non-diffusion type truncation error. The two-step stream
line method which is the combination of the stream line method and finite difference methods is
developed in this work for the solution of the governing equations of incompressible buoyant tur-
bulent flow. This method is compared with the finite difference method. The predictions of both
classes of numerical methods are compared with experimental findings. Truncation error analysis
also has been performed in order to the compare truncation error of the stream line method with

that of finite difference methods.
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a set of differential equations. There is a trun-

1. Introduction cation error which is the difference between

the algebraic set of equations constituting the

Computer codes used in the thermalhy- numerical approximations and that of the orig-
draulic analysis involve the discretization of inal differential equations. This truncation error
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degrades the accuracy of a calculation. As a
result of this error, thermal-hydraulic computer
predictions generally describe more diffusion and
mixing than true solutions. The reduction of
the truncation error, including numerical diffu-
sion, has been one of the most important tasks
in the development of numerical methods. To
show the truncation error and numerical diffu-
sion in two dimension, a Taylor series analysis
was performed on the convection equation of
x-direction momentum. The detailed derivation
of the analysis is presented in Appendix. If we
retain only the.terms containing #,,,u,, and
4., from the result in Appendix, we obtain a
diffusive error of the form.
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There are also various non-diffusive truncat-
ion error terms such as dt-u.u, v, and dt-u.
%%, It must be noticed in a single dimension
that the trnncation error of the first order is
always of the diffusion type. Therefore in a
single dimension, there is no lower non-diffu-
sion-type truncation error.

It is also important to notice from Eq.1 that
there is a cross flow numerical diffusion term,
—uvdt u,,, arising in the two dimensions.This
cross numerical :diffusion occurs when flow is
oblique to the grid lines and when there is a
non-zero gradient of the dependent wvariable
(1]. Eq. 1 also gives the magnitude of the
cross numerical diffusion coefficient as

Oen=luv|dt, or
=U? cosfsinfdt, or
2

2
where u is the resultant velocity (U?=u?+1v?)
and @ is the angle (between (° and 90°) made
by the velocity vector with the x-direction.One

sin264¢ @)

can see from this equation that no cross num-
erical diffusion is present when the resultant

flow is parallel to one of the sets of grid lines.

2. The stream line method

The stream line method solves the following
convection equation.

Q:+uQ,+vQ,=0 3
where the initial condition is Q(z,y,0)=Q,
(x,5). The physical meaning of Eq. 3 is that
the convected qualtity Q remains constant along
the characteristic line defined by %—:u and
%:v. The basis of the stream line mwethod
of solving the convection equation consists of
the determination and trace of the stream line.
Let the transported quantity, Q, be known at
each node at time #,. Then, the goal of the
solution is to calculate Q at each node at the
next time step, £,+4t. From Figure 2, consider
a particle which is at a node A(4,, 4,) at time
ty+4dt. To calculate Q (A, #+4z), the position
P(P, P,) where the particle was at time ¢,

must be found using the equations.

P=a— [ uganiar @

P=4,— [ viganar ®)

where £ is the stream line. After locating the
position P,Q(A, t,+4t) can be calculated using
the relation Q(A,t)+4t)=Q(P,t,). There is a
problem, however, in that P is not generally
a discretization node. Thus, the value Q(P, ty)
must be interpolated. Therefore, the solution
procedure of the stream line method can be
summarized as consisting of two steps. One is
evaluation of the characteristic integrals of Eqs.
4 and 5. The other is numerical interpolation
for evaluation of dependent quantity, Q.

In one dimension, the characteristic integral
evaluation proceeds as follows: In Fig. 1, disp-

—
lacement A—P is equal to the characteristic
integral. If the direction of velocity is upward,
the characteristic integral, CI, becomes:

—
Cl=A—P=u,dt (6
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Fig. 1. One Dimensional Mesh Configuration
A,B,C and D indicate the nodes (i, j),
(-1 j, G-, j- andd, j-1), respectively.

Since P is located between A and B subject to
the Courant condition (~1:3i£—< 1) the follow-

ing relationship holds:

Up—Uy

Upy=Up+ y a— (I;'—Z) D

Combining Eq. 6 with Eq. 7 yields the result:

AtuA
At (us—up) — Az

From Eq. 8 it is demonstrated that CI=—u,J¢
= —upgdt if up—u,= constant.

Cl=

dx ®

In two dimension, the characteristic integral
evaluation proceeds as follows: Applying Eqgs.
4 and 5 in Fig. 2 yields:

CIX=A,—P,=u,dt, (9)

CIY=A,—P,=v,dt (10)
Since it is impossible to find exactly #, and v,,
it is necessary to approximate #, and v,. The
simplest way to approximate them is to make
u,=u,, and v,~v,. An improvement upon the
simplest approximation is to approximate u,
and v, by the axis approximation, to make

u,=u,’ and v,=v,” or to make

17

u,=u,’” and v,=v,” as shown in Fig. 2,
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Fig. 2. Two Dimensional Mesh Configuration

If we approximate w,=u#,’ and v,=u,’, Egs. 9
and Eq. 10 yield:

CIX=u,'4t, and

CIY=v, 4¢
The value of CIY can be calculated in the same
way as in the same way as in one dimension.
Using Eq. 8 between A and P yields:

- At‘l),q
=gty ) GD

By using the calculated value of CIY, CIX can
be calculated as follows:

cry
CIX=u dt={ust =g ~(wp—un) |4t (12)

Eventually, CIX and CIY can be -calculated,
using Eqs. 11 and 12, respectively. The same
principle applies to the calculation of CIX and
CIY when approximating #,~u,” and v,=v,”.
The only difference lies in calculating CIX first
and CIY next.

As mentioned previously the position P in
Figs. 1 and 2 is not a discretization node in-
most cases. Thus, an interpolation is necessary
in order to calculate the value of Q(P, ¢,).

In this study, linear interpolation and the
second order interpolation have been considered.
Only linear interpolation has been adopted for
implementation in single dimensional and two

dimensional calculations. This is because this
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interpolation is physically reasonable, simple to
apply and permits one to reduce the running
time. The linear interpolation in single dimen-
sion is the following. Applying the interpola-
tion to Fig, 1 yields the following relation:

0=0i—-5% @s-00) a®

The linear intenpolation in two dimensions can
be represented as shown in Fig. 2 yielding the

result
Q=010-—m) 1—n)Qu+m(1—n)Qs
+ (1—m)nQp+mnQc,
where m=—CIX/4zx, n=—-CIZ/4Z. (14)

3. Truncation Error Analysis of The
Stream Line Method

Assume flow is upward in one dimension as
shown in Fig. 1. Since v is constant from the
continuity equation, the characteristic integral,
CI, becomes vdi. Linear interpolation, subject

to the Courant condition,yields:

Qin+1=Qin+ (_Q"_"_Z—:j!'n_) vdt (15)

From Eq. 15, it is seen that there exists an
equivalence between the donor cell method and
the stream line method with linear interpolation
in one dimension.

In order to make a comparison to the two
dimensional stream line method, the two dimen-
sional donor cell method is examined. In two
dimensions, the donor cell method is stated as:

Q=0+ uAit Q%1:— Q%)
+ 124: @i —Q%»  (16)
where u=u",>0. v=v"42>0, It is assumed the
flow is upward and from left to right. It is also

assumed that u,=« and v,=v, which is the
simplest approximation for the characteristic
integral in Fig. 2. Then the characteristic inte-
grals, CIX and CIZ, become:

CIX=—uydt, and

CIZ=—v,4t

Inserting CIX and CIZ into Eq. 14 yields the
result

Qi,j"“:Q”f,ri—lﬁ;“ Q1= Q%)

At
+ 'le— Q% 5-1—Q%,))

+ ZZ_{Z Qi— Q%1

Q%1+ Qo1je1) ¥
The last term of Eq. 17 is equivalent to the
finite difference form of the term wvdi’Q,.. As
is pointed out previously, uvdi?Q,. is from the
cross numerical diffusion term. From this fact,
it can be concluded that the cross numerical
diffusion can be cancelled by using the stream

line method in two dimensions.

By using the axis velocity approximation, u,
=u,’ and v,=v,’ (or #,=u,” and v,=v,’’) in
Fig. 2, CIX and CIZ are seen to be

CIX=4dt(u—u, » udt), and

CIZ=4t(v—v, « udt) (18)
Inserting Eq. 18 into Eq. 14 yields Q,*' as
At
Q. =0",;+ Zz Q15— Q", )
vdt

N Q71— Q" 1)

uvdi?
T de Qeim Q1= Qs
+Q% 1551 +uAt2ur—--———Qn"_l’; — Qs

tudito, Lo =i (19)

The last three terms of Eq. 19 are equivalent
to wvdt®Q.., At*u u.Q. and udi?v.Q,. From Eq.
A. 8 in Appendix, it is shown that these three
terms are truncation errors from the time
derivative term. The term uvdt?Q,, is a diffu-
sive type truncation error. The other two terms
are, however, non-diffusion type truncation
errors.

From this fact, it can be concluded that non
diffusive type truncation errors other than cross

numerical diffusion errors can be reduced by
using the stream line method with linear
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interpolation and axis approxmation for the
characteristic integral.

4. Application of The Stream Line
Method to Navier-Stokes Equations

The classical characteristic method has been
used for the solution of quasi-linear hyperbolic
differential equations, governing compressible
flow and the flow of small compressibility
where the sonic characteristic lines are consid-

ob )———C2 toget-

ered. The isentropic relation( 3
. s
her with the continuity equation gives the pre-

ssure equation. Then, the pressure can be calc-
ulated along the sonic characteristics line.

There are the major difficulties in the appli-
cation of classical characteristics methods to
turbulent incompressible flow which concerns this
study. First,sonic characteristics cannot be used
to calculate pressure because the sonic velocity
in incompressible flow is infinite, Secondly, the
method of characteristic is basically designed to
solve the hyperbolic convection equation.

This method cannot deal with the effect of
turbulent diffusion and some effects other than
convection. To overcome these two difficulties,
the two step stream line method is designed.
To solve the first difficulty,the two step stream
line method solves for the pressure implicitly.
To resolve the second difficulty, the transport
equation is split into two equations where the
stream line method is only applied to the con-
vection equation.

Fig. 3 describes how to apply the stream line
method to the solution of Navier-Stokes equati-
on.

The application can be explained through the
following Navier-Stokes equation, Eq. 20 and
Continuity equation, Eq. 21

Q,+C=D+B-+P, (20)
7 - Q=0, (21)
where Q=velocity variable
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Fig. 3. Flow Diagram of Solution Scheme of the
Two Step Stream Line Method
Q,=time derivative term
C=convection term
D=diffusion term
B=bhuoyancy term
P=pressure gradient term.
The solved velocities must satisfy both Egs. 20
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and 21. To implement the two step stream line
method, Eq. 20 is split into two equations such
as Egs. 22 and 23,

%tQLﬂLC:o 22
R _piB+P 22)

Eq. 22 is the convection equation of momentum
which is solved through the stream line method.
‘This gives the intermediate value of the appr-
oximations of new velocity. Eq. 23 is solved
through the finité difference method. But for the
calculation of the density for use in the buoyan
¢y term, the convected internal energy using
the velocities at previous time step is used to
better stabilize the calculation. The solution of
Eq. 23 is the approximation for new velocity.
This explicity calculated new velocity does not
satisfy Eq. 21 the continuity equation. Therefore
the new velocity must be adjusted to satisfy Eq.
21 by making appropriate change in the cell
pressure using the SMAC method [2]. When
convergence has been achieved, compute the
intermediate values of the internal energy and
turbulence transport variables for a mesh by
considering only convection with the velocities
of each new time step through the stream line
method. With these intermediate values, the
internal energy and turbulence variables of each
new time step is computed by considering the
effects other tham convection through finite diff
erence methods.

In order to validate and test the developed
numerical method, a comparison between the
predictions of the computer code and the expe-
rimental results on the field is performed. The
experimental data of Howard and Carbajo [5]
on thermal hydraulic behavior in Liquid Metal
Fast Breeder Reactor (LMFBR) outlet plenum
are used for this study. Among twelve tests,
two tests, BT 16 and BT 21, are chosen for
the comparison. The plennm fluid in test BT
16. before the flow of cold water was initiated,

TC. No. 3§
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Fig. 4. Outlet Plenum Configuratic.: of Test BT
16
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Fig. 5. Experimental and Predicted Temperature
of Outlet Nozzle in Test BT 16
was hot and stgnant. In test BT 21, the flow
was recirculating in a steady state condition
before the flow coastdown transient became
effective.

Fig. 5 shows the transient temperature predi-
ction at the outlet nozzle for test BT 16. Fig.6
shows predictions and experimental results for
the temperature of the thermocouple No, 36 in
test BT 16. (Refer to Fig. 4 for the outlet ple-
num configuration of test BT16) Fig.7 shows
the predictions and experimental result for the
temperature of the reactor outlet nozzle in test
BT 21.

As seen in Figs.5,6 and 7 the predictions
by the developed two step stream-line method
are closer to the experimental results than those
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Fig. 6. Experimental and Predicated Temperature
of Thermocouple No. 39 in Test BT 16
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Fig. 7. Experimental and Predicted Temperature
of Outlet Nozzle in Test BT 21

by the finite difference donor cell method.
5. Summary and Conclusions

1) The two step stream line method which

is the combination of the stream line method
and the finite difference method is developed as
a numerical method to reduce truncation error
including numerical diffusion for the solution of
Navier-Stokes equations, energy equation, the
turbulence transport equations and continuity
equation which govern the behavior of two
dimensional incompressible nonisothermal turbu-
lent flow.

2) The developed two step stream line met-
hod gives better agreement with experimental
findings than the finite difference donor cell
method.

3) Trunction error analysis shows that the
stream line method with linear interpolation
is equivalent to the finite difference donor cell
method in one dimension.

Truncation error analysis also shows that the
stream line method cancels cross flow numerical
diffusion and some of the non-diffusion type
truncation errors which the finite difference
donor cell method has in two dimension.

References

1. Patankar, S.V., “Numerical Heat Transfer and
Fluid Flow”, Mc-Graw-Hill, New York, 1980.

2. Amsden, A.A., Harlow, F.H., “The SMAC Met
hod: A Numerical Technique for Calculating Inc
ompressible Flows,” Los Alamos Sci. Lab.Report
LA-4370, May 1970.

3. Chang, S.H., “Comparative Analysis of Numerical
Methods For the Solution of Navier-Stokes Equ-
ation,” MIT Ph. D Thesis, 1981.

4. Tang, Y.W., et al., “Thermal Analysis of Liquid
Metal Fast Breeder Reactors,” American Nuclear
Society pp. 164-170, 1978.

5. Howard, P.A., Carbajo, J.]., “Experimental Stu-
dy of Scram Transients in Generalized Liquid-
Metal Fast Breeder Reactor Outlet Plenums,”
Nuclear Technology, Vol.44, July 1979.

6. Benque, ]J.P., et al.,, “A Finite Element Method
for Navier-Stokes Equation,” Laboratorie National

d'Hydraulique, Electricite de France.



28 J. Korean Nuclear Society, Vol. 16, No. 1, March, 1984

Acknowledgement

The financial support of the U.S. Department of
Energy is gratefully acknowledged.

Appendix
Taylor Series Expansion of X-Direction
Momentum Convection Equation in two
Dimensions

The expansion has been made under the following
assumptions:

o Single phae flow

o Incompressibe

o Uniform mesh spacings and time intervals

o All flow is Upward and to the Right, i.e.,

Uitv1220 Dit1,220

Under these conditions the momentum in the z-dire-

ction may be written as:
( 7+1 un

du
' —u)in1yy
It Jisniy 4-[u-'+1/2 ﬂ)”iﬂ/z
du
+v".~+1/2(7? )"Hm ] =0
Expanding all finite difference quantitites in Taylor
Series about the points i and # up to terms in dz?
and 442 yields:

2
i e=u+ A; .+ Atuy+ 4z Uit %uu
2
+ "2‘ un-F0(4a?, 469,
2
lli+1/z"=lt+~42£uz+ "g s +0(d2).

Thus, the following relation can be obtained:
ntl__gny .
Wiy B2y By o),

2 2
(A.D
For u"1,2>0, the following relations hold

du
(75)”s+m= Whivir2—u"io1,0) [ dz,

u s+1/2—u+—Az us+ A8

2
"; et "g s +0(42%).

Thus, the following relation can be obtained:

Uzx+ 0(41«‘3) )

Utisia=u—

14":'+1/z< j; )"-’+1/2:ullx+ 42.1: %’

4z?

78

U:ttex+0(423). (A.2)

For 9i112>0, the following relation can be obtained

in the same way:

4 4z
fh'+1/2<T:>"-‘+1/2:vﬂy+ 5 v,uﬁ— 8 uyvyy

4z [ 4y . dydx
+ 5 UyVxx [2 v = vx]uy,
4z 4z* FAes A8
+[_‘2 v+ 4 vx}”x;z“"O\A-r,Ay)' (A'3)

Substitution of Eqs. A.1, A.2 and A.3 into the

finite difference z-momentum convection equation

yields:
m+uu,+vuy+[—un+ dz u.”
2 2 2
2 2

-+ Ag uxux,+ 5 'Uxu_v+ g’ UyDyy
4x? 4 4

+ g UyUszx— Zy Vtbyy— 4.7: dyvateyy
4 Ax?

+ z‘rvu;y-i- Z 'v,uxy]=0

Denoting the terms in braces by R, the "above equa
tion bebomes:

ustuus+vuy,+R=0.
If R=0 the above equation becomes the original z-
momentum equation, so R is a residual error term
introduced by the differencing scheme. Two momen-
tum equation and continuity equation and contiuity
equation are:

Ur=—Ultz—Vlly,

Vt= —UVx—VVy,

#s+0,=0 )
The above equations yield the following relations:
Ust = —Usllx— Ul xt ~— Vithy— Vih 1, (A.5)
et = (U) x= — U2 — Ul sy~ Vally— Vll sy, (A.6)
Uyt = () y= —Uylhx—Ullzy— Vylly— Vil yy. (AT

Substituting equations A.4, A.5, A.6 and:A.7 into
R and rearranging yields:

R= [%u ‘;‘r }un-!-[ ‘g 2— /'123' v]uyy

2
+uvdtuzy+ ";'

2

UyUzx + Ag

UyUyy

2
+4tu [u}—l— u yvx] + A‘; Vsllzz— —Af—dyvxu yye

This then is the truncation error, to orddr 4z%, 4%
and 4¢%, introduced by the explicit upward differenc-
ing scheme for the x-momentum convection equation

in two dimensions.



