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Abstract

Similitude requirement for model testing of flow induced vibration of reactor internals
are investigated. In depth discussions on the Reynolds number effects are made. For valid
model tests of fuel assemblies vibrating in its fundamental natural frequency, reduced

frequency (fD/U), and damping parameter (m¢dc/Dp®) are twomost important parameters.
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1. Introduction

Much valuable information on the struc-
tural dynamics of reactor internals and fuel
assemblies can be obtained from model tests
in a water-loop. This includes the excitation
mechanisms, the corresponding vibration
responses, the mechanical impedances, and
the characteristics of the system damping?
Because of the requirements on geometr-
ical, kinematical, and dynamic similarity,
reactor component models are quite expen-
sive and difficult to construct and test.
To obtain satisfactory results, elaborate te-
chniques of model construction and test
instrumentation will have to be developed.

This paper descrbies important fuid elastic
parameters that have to be matched for a

valid model testing.

2. Dimensional Analysis for General Flow-
Induced Vibration Problem

The principles of model testing are based
on the theory of dimensions® which states
that the fundamental dimensions of every
summation term of an equation which des-
cribes a physical law must be the same.
This statement can be formalized by what
is known as the Buckingham =z theorem. It
states: If the number of kinds of physical
quantities associated with a certain pheno-

menon are #m in number, and if all these
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quantities can be expressed in terms of no
more than » fundamental dimensions, then
the phenomenon can be described in terms
of (m—n) independent dimensionless com-

binations of the physical quantities involved,

Three fundamental dimensions; length L,

time T, and mass M, are involved in the

analysis of a dynamic system. That is #=3.

In listing the physical variables associated
with flow-induced vibration phenomena, it
is advantageous to distiuish between the
dependent and independent variables. The
independent variables are those that can be
varied independently of each other by the
experimenter without affecting each other.

There are four dependent variables com-
monly encountereddin flow-induced vibration
phenomena. Variables 1 and 2 involve the
elastic structure and _variables 3 and 4 are
related to the fluid.

DEPENDENT /&  SYMBOL DIMENSIONS

1. Vibration Amplitude y L

2. Vibration Frequency © T

3. Fluid force acting on Fy MLT-?
a member

4. Frequency of periodic w, -t
fluid phenomena
The number of independent variables

depend on the scope [of the problem. For
the development of nuclear reactor models,
we assume that the following relationships
exist between the model and the prototype:
(1) All fluid-structure boundaries are geo-
metrically similar, including the
surface roughnesses.

(2) The structure itself

similar (similar mass and stiffness

is dynamically

distributions in the various directions)
(3) No cavitation occurs.
(4) Thermal effects are negligible so that
the system behavior is independent of
the Prandtl number and the ratio of

specific heats.
Under those assumptions, we can write 13
independent variables; 1-5 are related to
the structure, 6-9 are related to the flowing
fluid, and 10-13are related to the environ-
ment and boundary.

INDEPENDERT, ¢ SYMBOL DIMENSIONS

1. Characteristic size of D L
structure

2. Mass of structure M M

3. Stiffness of structure K MT-*

4. Mechanical damping C MT-!
of structure

5. Acceleration of gravity g LT

6. Velocity of flow U LT-!

7. Density of fluid P ML-3

8. Viscosity of fluid o ML-T-!

9. Speed of sound in fluid « LT

10. Externally applied force Fe MLT->

11. Frequency of external . Tt
force

12. Boundary displacement v, L

13. Frequency of boundary w; T-1
displacement

In addition to these independent variables
which will be combined and grouped into
independent = products, there are numerous
geometric angles and ratios(spacing, shape,
and roughness) that define the system geo-
metry and that are themselves independent
= products. These geometric quantities and
the = products to be derived form the com-
plete set of products.

In performing a dimensional analysis, only
one dependent variable can be treated at a
time. For illustration, the displacement »
will be used. A non-dimensional product, =,
of the dimensional variables can be written
in the from

n=y*a-MKC/ Fievery'bbi b DIUg" (1)
in which the exponents are pure numbers
of such values that the net(sum of all the
exponents) power of each of the fundamental
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units L(length), M(mass), T (time) involved
is reduced to zero. Each variable in Eq. 1

can be replaced by its dimensions. For
example
—s (ML\T-) b =M?L-*T-? (2)
Hence
a=(L)s (ML-T-Y)*(LT-t)e..
(LT-Y=(LT-%" 3

A dimensional matrix composed of exponents
for the dimensions can be written as above.
The three linear equations for the expnoents
are;

L:a—b+c +8 +i —3k+-+mtn=0

M b+d+et+f+g+k=0 (5)

T:—b—c—2—f~28—h—j—m—2n=0
We have 3 equations and 14 unknowns. The
matrix of the coefficients has 3 rows and
14 columns. The rank (the maximum order
of the nonvanishing determinant) is 3,
Algebraic theory states'® that there will
be a unique solution of the equations for
any three terms whatever choice is made

for the remaining terms other than all zeros,

The number of terms equals the rank of
the determinant. In most cases the rank
equals the number of fundamental units.
For the method to follow when the rank is
less than the number of fundamental units
see reference 13. Theory further states that
there are only 14 minus 3 or 11 linearly
. independent solutions; any other choice of
_ the remaining terms yields combinations of
those already obtained. In general, the
“number of linearly independent solutions of
the linear equations for the ipowers of the
dimensional quantities equals the number
of non-dimensional products, =, in a complete

set.

For convenience, solutions for £ I, and m
will be found for the following choice of
values for the remaining terms.

Solution }an’c mn
1 1{ojo| - . . 0{0
2 o{1|o] - . . 0i0
3 001 . . . o0
13 0(o(of - . . 1|0
14 ojolof - - -« |O]L

Substituting the chosen values into the

equations for L, M, and T we have

SOLUTION 1
L:1—-3k4+ +m=0
M: k =0 (6)
T: —m=0

a=1

Solving m=0
k=0
l=—1
a=1

Substitute into Eq. 1

hence n=y'D-!
or n==y|D (7)

SOLUTION 2 5=1
L; —1—8k+l4+m=0

M: 14k =0

T:-—1 ~m=(

Solving m=—1
k=1
i =—1 Substitute into Eq. 1
b= 1

= [J-1p-1D-1—= .
hence n=pU-p D= SUD
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or inverting

oUD
= 8
T2 P ( )

Continuing in a like manner gives
m=Ula nq=M|pD?* z;=K]|pU2D
n;=CJpUD? n,=F,]pUD? ny=w,D|U
wo=3s/D mo=wD|U n,=U?|Dg (9)
Replacing the dependent variable y in turn
by variables o, F,; and o, and solving the
resultant equations gives the alternate m

groups
@D FlpUtD%, wD|U (10)
Each =, group is a function of the some =,

through =,
Ty =@ (mg, orreee , T1y) (11)
Some brief comments on the physical
significance of the similitude parameters, =,
through =,;, may be useful.

(A) Reynolds number-? ZD , is proportional
to the ratio of fluid inertia force to
viscous force.

{B) Mach number, U/a, is proportional to
the square root of the ratio of fluid
inertia force to fluid elastic(compressi-
bility) force.

(C) Mass ratio M/pD? is the ratio of (effec-
tive) structure density to fluid density.

(D) Fluidelastastic parameter, K/pU?D, when
multiplied by the dimensionless ratio
y/D(the elastic deflection y, divided by
the characteristic length D) is propor-
tional to the ratio of the mechanical
spring force to the fluid inertia force.

(E) Damping parameter, C/pUD?*when mul-
tiplied by the dimensionless ratio wy/U
(ratio of vibration wvelocity to fluid
velocity) is proportional to the ratio of
the mechanical damping force to the
fluid inertia force.

{F) External force :parameter, F,/oU2D? is
proportional to the ratio of the externally

applied force to the fluid intertia force.

(G) The reduced forcing frequency, «.D/U,
is proportional to the ratio of the cha-
racteristic time for the flow (D/U) to
the period of the forcing function. D/U
is the time required for the fluid to
flow a distauce. D.

(H) The boundary displacement parameter,
¥/ D is the ratio of the forced amplitude
of motion to the system characteristic
length.

(I) The reduced motion frequency w,DjU is
proportional to the ratio of the charac-
teristic time for flow (D/U) to the
period of the forced vibration displace-
ment of the boundary.

() Froude number, U%/Dg, when multiplied
by the mass ratio pD?/ M, is proportional
to the ratio of the fluid inertia force to
the weight of the structure.

3. Similitude Requirements for Valid Model
Tests of the Flow-Induced Vibration of
Reactor Internals

When a geometrically and elastically
scaled reactor internals model is built and
prototype fluid and flow rates are used in
the tests, the important similitude parame-
ters become the same for the model and the
prototype except

Reynolds number oUD/p
Froude number U?|Dg
External force parameter F./pU2D?
Reduced forcing frequency «,D/U

In the flow-induced vibration of reactor
internals, external forcing functions are
caused by the pump pulsations. The word
“pump pulsation”Zis not well defined for
the centrifugal pumps that are used in the
primary loops of reactors. Some work!®
indicates that pump pulsations consist of

(1) discrete-frequency components(at im-
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peller rotational frequency and at
blade passing frequency)
(2) large scale turbulence
(3) acoustic waves
The Froude number, when multiplied by
a mass ratioi is proportional to the ratio
of the fluid inertia force to the weight of
the structure.

U U oD _ oUD
D, D, M M,

This a very important parameter that must
be made the same in model and prototype
when rigid body motion of a structural
component is being investigated and the
steady fluid forces cause separation of
structural components to occur. The scale
factor of the model must be such that the
Froude number is the same for the prototype
and the model, when the rocking of a loose

(13)

thermal shield, or a core barrel are investi-
gated.

The major components of modern reactor
internals are tightly clamped. Consequently,
the only similitude parameter that has to
be matched to obtain overall esimilitude is
Reynolds number. In many cases, the de-
pendent-variable =; group is a weak function
of Reynolds number, or is even independent
of it, over part or all of the flow range of
interest. For example, the dimensionless”
vortex-shedding freqency, wD/U, for a cir-
cualr cylinder has essentially a constant
value from R=2X10% to 2X10°, a 1000 to 1
rang in Reynolds number®_ In the supercri-
tical range, 3.5X 10°<R<3.5X 105, no periodic
vortex shedding occurs?. In the transcritical
range, £>3.5X10° periodic vortex shedding
occurs again'®, The drag coefficient for a
circular cylinder has essentially a constant
value from R=3.5x10%to 3.5x10° and drops
suddenly to a lower constant value for
higher Reynolds numbers®,

Whenever the flow separates at sharp
edges instead of on rounded surfaces, as in
the case of a flat plate that is perpendicular
to the flow, the drag force (and, therefore
the pressure around the plate) is nearly
independent of Reynolds number and is
proportional to the square of the flow
velocity®. A sharp-edged disc perpendicular
to the flow has a constant drag coefficient
from R=10° to R=10° and probably to very
much higher Reynolds numbers”, The drag
coefficient for a rectangular cylinder is con-
stant to very high Reynolds numbers when
the edges are sharp, but it decreases to a
lower value at Reynolds numbers somewhat
above 10° when the edges are signifieantly
rounded® .

The dimensionless pressure drop across
an orifice is essentially independent of Rey-
nolds number, for R greater than 3,5x10%
and the dimensionless pressure drop acrss
a flow nozzle decreases with increasing
Reynolds number up to R=10°(decreasing
about 7% from R=10'to R=10%), after
which it maintains a constant value®.

A particularly important flow phenomeon
is the flow instability that occurs in a
diffuser when the divergence angle is too
large. Flow separation occurs along " the
excessively divergent walls, and the alter-
nate periodic shedding of accumnlated stag-
nent fluid from the separation regions on
opposite walls causes the stream in the
diffuser to lash back and forthsbetween the
divergent walls, which exerts large fluctua-
ting forces on them and causes excessive
A band of unstable
diffuser performance can be defined in terms

vibration and noise.

of two geometric similitude parameters in-
volving the diffuser divergence angle and
the ratio of length to inlet width. A stability
graph can be plotted in terms of these two.
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independent parameters alone. The unsteady
transitory stall occurs at large divergence
angles; steady fully developed stall occurs
at very large divergence angles. It has been
established!® that the instability band is at
most very weakly dependent on Reynolds
number over a range from R=6X10° to at
least 3x10° where R is based on throat
width and mean throat velocity. The insta-
bility also appears to be little affected by
relatively large changes in inlet boundary-
layer conditions. The insensitivity of the
diffuser instability to Reynolds number
variations of more than 500 to 1 suggests
that similar flowseparation phenomena in

reactors, such as nozzle instability, are also

only weakly dependent.on Reynolds number.

One of the most important excitation
mechanisms involved in the flow-induced
vibration of reactor internals is the boun-
dary-layer turbulence. Experiments on boun-
darylayer turbulence has shown that the
ratio of rms wall pressure to free stream
dynamic pressure is constant and indepen-
dent of Mach number and Reynolds num-

berll)

4. Application to Flow Induced Vibration
of Fuel Rods.

It has been noted that the fuel rods
vibrate at its natural frequencies when
their vibration amplitudes are large. The
dependent variable of interest is the displa-
and the
are U, p,p,D, 0w, and C. For this case, the

cement ¥, independent variables

dimensional analysis reveal

sip=g (L2, 42 L)

A more convenient form can be obtained.

%ﬂ[%]xﬁ

where C.=2M,w (15)

(14)

where M, is the apparent mass of a fuel
rod. ButC/C,=4,/2x,
decrement in still fluid. Further more, to

where do=logarithmic

be consistent with beam vibration analysis
practice, we use M,=D.m, where m, is the
mass per unit length of the beam (fuel rod).
Then Eq. (14) becomes

D i
3[D=g (R p-, ]

For a valid model testing, when we use

(16)

prototype flow velocity, we can write

Conclusions

It has been shown that hydraulic pheno-
mena scale exactly if the Reynolds number
is the same on the geometrically scaled
model and its prototype. Even when proto-
type Reynolds number can not be duplicated
in the model, useful and even quite accurate
information can still be obtained, especially
if surface roughnesses are adjusted to man-
tain proper relative flow velocities. Many
hydraulic phenomena are only weakly de-
pendent on Reynolds number, especially
when the Reynolds number are high. For
valid model tests of fuel assemblies vibrating
in its fundamental natural frequency, fD/U
and myd,/pD? are two parameters that have

to he matched.
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