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Abstract

The current status of the computational methods and computer codes for

the analysis of reactor Kinetics is reviewed. Computational methods which

have been developed for space-dependent transient analyses are presented and

recent progress in the development of methods is discussed.

1. Intreduction

Nuclear reactor kinetics is the study of
the time-dependent kehavior of the neutrons
in a reactor core. The prediction of the time
tehavior of the neutron population induced
by various changes in reactor multiplication
is essential to safe design and operation.
However, the accurate prediction is very
difficult to obtain.

Cne can roughly distinguish Letween two
different types of kinetics analysis depen-
ding on the time scale characterizing changes
in core properties. In this overview, metho-
dology for treating transient phenomena
with time constants on the order of hours
or days, such as isotopic depletion and xenon
spatial oscillations, is not included. The
specific areas of reactor kinetics to be treated
here are computational methods for analy-
zing rclaively short-term changes such as
operational transients, off-normal transients,
and hypothetical accidents in power reactors

for operational and safety purposes.

The subject of space-time nuclear kinetics
is extensively treated in Stacey’s kook.) In
recent years, excellent and comprehensive
reviews of the spacc-time reactor kinetics
were made by Henry®, Stacey®, Stewart®,
and Ferguson®.

There has been growing need for develo-
pment of solution methods for more than
one spatial dimension in order to insure
accurate predictions of transient flux and
power distributions, because the power reac-
tors are growing in size and there is an
increasing economic incentive to be able to
set operational safety limits in reactors as
realistically as possible. With the advent of
today’s high-speed scientific computers, it
became practical to implement solution meth-
ods for treating multidimensional transient
analysis.

2. Mathematical Mcdels

The neutron population in a reactor can
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be modeled mathematically by the Boltzmann
transport equation. Solving this equation
analytically is usually impossible, and ap-
proximate numerical solutions are often time
consuining.

A simpler mathematical description of the
neutron behavior is that of point kinetics
for which angular and spatial neutronic
propertles are assumed constant in time.
For many problems angular effects may be
neglected, but spatial effects may not. Hence
point XKinetics is usually inadequate for
describing the detailed behavior of neutrons
in a reactor, especially in a large one.

The neutron population of a reactor may
be described by diffusion theory in which
complicated angular effects are neglected.
Space, time, and energy are treated with
sufficient accuracy so that approximate
solutions of the diffusion equation are
satisfactory for most kinetics problems.

The well-known multigroup diffusion form
of the reactor Kkinetics equations may be
written as followse":
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=neutron flux in g’th energy
group (n/cm? sec)

where ¢, (r,t)

C:(r,f) =concentration of i'th pre-
cursor group (atoms/cm?3)

v, =group speed (cin/sec)

D (r,t) =group diffusion coefficient

{cm)
Ziggs (1) =1ntergroup transfer cross
section, g'#g (cm™!)
¢s(r,t) =group removal cross section

in g’th energy group (cm™)

Sai =fractional yield of ith-
group precursors into group
g (sec™)

big(r,t) =production factor i'th pre-

cursor by fission in g'th

energy group {cm™!)

e =decay constant of i"th pre-
cursor group (sec™)
g =index of neutron energy
group, g=1,2, --+e-- ,G
7 =index of precursor groups,
£=1,2,eeene ]
The (G+I1) Egs. (2.1) can be compacted

into matrix form as

SO =M (r,)0(r.1) (2.2)

where ¢ is (G+I) element vector and M
is (G+I) x (G+1) operator matrix. Eq. (2. 2)
is a convenient way of expressing the
multigroup neutron diffusion quation with-
out specifying the method of solution. Other
forms are possible depending upon the
ordering of unknowns, the method of solu-
tion, and the discretization of space and
time,

Let a reactor be modeled by a grid of
spatial mesh points. Then spatial discretiz-
ation of multigroup neutron diffusion equa-
tion leads to the semi-discrete form of the

kinetics equation

o _
—=4Y (2.3)

Much effort has been devoted to the
development of methods that numerically
solve the multigroup neutron diffusion euq-
ation as efficiently as possible. These me-
thods are reviewed in the next section.

Numerica solution algorithms for the
time-dependent nutron transport equation
have been reviewed by Ise and others.®
At present, only a few transport kinetics
codes have been developed for one®!%'" and
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two dimensional applications.!?:!» The de-
tailed discussion on the transport Kkinetics
is beyond the scope of this report.

3. Computational Solution Metheds

Since a general solution of the multigroup
diffusion equation in terms of continuous
parameters r and ¢ is impractical for most
reactor problems of interest, numerical solu-
tion techniques are usually employed. A
nuclear reactor may be numerically modeled
as a grid of mesh points. Associated with
each mesh point are the values of the
dependent variables of the neutron diffusion
equation: G group fluxes and I precursor
concentrations. For a total of N mesh
points there are then (G-+I)xN unknowns.
Furthermore, the time dependence is discr-
etized and the unknowns must be solved at
each step in time.

Solution techniques for the multigroup
form of the timedependent diffusion equa-
tion in one or more space dimensions can
be divided into two broad categories: direct
solution techniques and indirect solution
techniques such as synthesis methods. For
purposes of reviewing their status in this
paper, comptatioal methods are grouped into
five classes. These are: finite difference
(direct integration) methods, synthesis (mo-
dal) methods, quasistatic (factorization)
methods, nodal (coupled-core) methods, and
coarse-mesh methods.

In finite difference methods the neutron
diffusion equation is solved by direct num-
erical integration. These mothods are direct
solution techniques and other ones belong
to indirect solution techniques.

In synthesis methods the fluxes are ex-
panded as sums of spatial modes with
expansion coefficients to approximate the

unknown function of space and time by a
linear combination of known space functions
with unknown time-dependent cofficients.
Quasistatic methods may be thought of
as synthesis methods with only one spatial
mode.

In nodal methods a reactor is divided into
large subregions. A single node is then
associated with each of these subregions
and assigned gross values that are charac-
teristic of the nuclear properties of the
subregion.

While the first four classes utilize a fine-
mesh spatial discretization procedure, coarse-
mesh niethods use a variety of techniques
to increase the size of the reactor regions
which are used in the discretization proce-
dure.

3.1 Finite Difference Methods

The direct finite difference methods are
the most straightforward approach to the
solution of space-time problems. The general
theory of these techniques has been discus-
sed in some detail.!»7»1o

In finite difference methods, the neutron
diffusion equation is solved directly: fluxes
are not approximated by piecewise poly-
nomials, coupled black boxes, or spatial
modes as in other methods. The only as-
sumption made is that differential operators
in the diffusion equation may be adequately
represented by finite differences. A conse-
quence of this lack of major approximations
is that finite difference methods are char-
acterized by a large numbter of unknowns.
In favor of finite difference methods is the
applicability of mathematical analysis which
makes fairly definite error estimates possible.

Because of the large storage requirements
and long computing times, until recently
this approach has been impractically ex-
pensive for multidimensional problems. But
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increased computing power in the past
several years has permitted serious consi-
deration of direct solutions to multidimen-
sional problems.

8.1.1 Explicit methad

Explicit tine-differencing of Eq. (2.3)
leads to
w‘n-l»lh_w‘n =Aw’7' (3. 1)

where ¥**'=¥ (1"+!) =flux vector at time
V*=¥ (") =flux vector at time ¢*
h=t"*'—t*=time step size,
or V= (I+hAY U™ (3.2)
The explicit method represents the absol-
ute minimum computational effort at each
time step, but is numerically unstable unless
% is undesirably small.
3.1.2 Implicit method

Implicit time-differencing of Eq. (2:3)
leads to
y'rﬁ»\_)!fn _ o
-—-—h———-AJ 1 (3.3)
The solution is
Uril= (I—hA)~' W~ (3.4)

Implicit solutions are unconditionally sta-
ble and therefore permit the use of relatively
large values of 4. The allowable time-step
size is limited only by truncation error.
However, the solution of Eq. (3.4) requires
a very expensive matrix inversion at each
time step.

Recently TRIMHX code!®, a direct implicit
method analyzing three-dimensional probl-
ems, has been developed and shown to be
accurate at reasonable computing costs.

3.1.3 Semi-implicit methed

Although fully explicit and fully implicit
integration algorithms have been employed
to some extent, numerical stability problems
associated with the former and truncation
errors associated with the latter have
motisated the study of semi-implicit algorit-

hms.

The test known of the semi-implicit
methods is the so-called “#-method,” which
is employed in the widely used WIGL.1»
(one-dimensional) and TWIGL*® (two-di-
mensional) codes. In ¢-method, the matrix
A is divided into two parts as follows:

BT o apis (1-0) 407 (3.5)

where ¢ is a diagonal matrix of elements,
6:;, such that 0<6;<1, The 6’s are chosen
to improve the accuracy of the approxima-
tion. In the limits —0 and 1, the algorithm
becomes fully explicit and fully implicit,
respectively.

The solution of Eq. (3.5) is

Uiz T—hgA) (I +h(I—§) AJT* (3.6)
Proper selection of ¢ makes it possible for
semi-implicit methods to solve the neutron
diffusion equation efficiently by using large
time step sizes. However, at each time step,
the matrix (I—#%6A4) must be inverted. In
two or three space dimensions, this would
require quite expensive interative procedure.

A particular method has been investigated
to reduce truncation error without the ex-
pense of complicated inversions as in the
previous technique, making use of an “ex-
ponential transformation,”

¥ () =exp QT (1) (3.7)
where  is a diagonal matrix. Since the
behavior of ¥ (¢)is basically exponential in
nature, T(f) should be relatively slowly
varying, provided that § is properly chosen.
Hence, the time derivative of 7T(¢) can te
represented adequately by a low-order dif-
ference approximation.

The idea of exponential transformation
along with matrix splitting techique was
employed in the one-dimensional GAKIN
code® and its revised version GAKIN [[2,
This algorithm was applied to two-dimen-
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sional problems by McCormick and Hansen,?
and extended to treat higher spatial dim-
ensions by coupling with the alternating
direction methods.

“Alternating direztion methods” use a
two-step partitioning. A-matrix 1s splitted as

A=A+ A:=A;+ A,

For even time steps one partitioning is
employed, and for odd time steps the other
partitioning is employed, so that temporal
discretization of Eq. (2.3) leads to

Tatl __Hfn
U—}Ti :Alq[n_‘_Agw‘n-H

Ptz __n+l
h
yr+2=flux vector at time **2

h=t”+2—t"+1=t"+l—t"

=A3}p‘n+l+A4w’n+2 (3. 8)

where

The two-step finite difference solution in
Yrt={J—hA, ) M{I+h4,5(IT—hA)?
(I+hAJT" (3.9)

Alternating direction methods are two-step
finite difference methods for which A4,, 4.,
4;, and A4, are chosen such that Eq. (3.9)
is numerically stable and yet (I--%4.) and
(I—hA,) are easily inverted. These methods
may' be divided into three categories differ-
entiated by the treatment of diffusion terms:
alternating direction explicit (ADE), alter-
nating direction implicit (ADI), and alter-
nating direction checkertoard (ADC).

ADE method (MITKIN code) by Reed and
Hansen®» and ADI method by Wizht and
others®® were successfuly applied to the sol-
ution of diffusion equations in two space
dimensions. The MITKIN method was subs-
equently extended to treat three-dimensional
geomeiries by Ferguson and Hansen® with
3DKIN code. The checkerktoard method?,
a recently proposed alternating direction
method, was shown to be competitive with
other alternating direction methods.

3.2 Synthesis Methods
A varity of methods, having the expansion

of part or all of the spatial dependence in
known functions with undetermined expan-
sion coefficients that depend upon the rem-
aining spatial variables (if anv) and time,
have been developed in an attempt to obtain
an economical, but accurate, spatial appro-
ximation. These methods have teen labeled
as modal-expansion? or synthesis metho-
ds.?,28

Synthesis techniques can te Lroadly cate-
gorized as teing either time synthesis or
space-time synthesis. Methods in which all
the spatial dependence is expanded, resulting
in ordinary differential ejuations for the
time-dependent expansion coefficents, are
known as “time synthesis” methods. “Space-
time synthesis” is the term used for those
methods in which only part of the spatial
dependence is expanded, resulting in partial
(space and time) differential equations.

In time synthesis methods tiie fluxes are
expanded as sums of spatial medes with

time varying coefficients

S D=2 ) Ta®) 3. 10)

where ¢, (r,t) =multigroup flux

é,:(r) =k’th spatial mode or “trial

function”
T, () =coefficient of k’th mode.
Space-time synthesis scheme is capable of

dealing with problems of much greater detail
than is the time synthesis. The space-time
technijues utilize expansion functions which
represent flux shapes over subregions of a
reactor. A standard approach is to use two-
dimensional flux shapes representing all or
part of a cut through the reactor perpen-
dicular to the z-axis

G r0=5 dnns) TG 610

where ¢,.(x,») ==two-dimensional trial

. function
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T, (z,t) =mixing coefficient.

The spatial modes decribe the flux behavior
over large portions of the reactor, therefore,
fewer spatial mesh points are required and
the total number of unknowns is substan-
tially decreased. The choice of modes (ex-
pansion functions) is an important aspect
of the application of modal expansion me-
thods. Various attempts’>® utilizing several
types of modes have been successfully applied
to reactor models. Two variants of space-
time synthesis have been found to be the
most accurate; the multichannel synthesis?»
28 and the discontinuous space-time synthesis
2,%  ‘The space-time synthesis with axially
discontinuous trial functions treating BWR
rod drop accident3® showed accurate results
of calculation with fairly large time step
sizes relative to the ADE finite difference
method.

Modal methods are characterized by a
For the
analysis of operational transients, where

lack of definitive error bounds.

safety is not an important issue, space-time
synthesis methods are generally satisfactory

and are often the most practical. When-

safety issues become important, such as in
the analysis of the more severe off-normal
transients and hypothetical core disruptive
accidents in LMFBRs, the fact that no
procedure exists for establishing an. error
bound on the solution provided by a synthesis
method becomes a serious drawback. This
fact has served to spur the development
of more exact quasistatic methods.

3. 3 Quasistatic Methods

The quasistatic methods proposed by Ott®® .

and improved by Ott and Meneley3?®, factorize
the neutron flux into a !time-dependent
amplitude function and a space- and energy-
dependent shape function which is assumed

to te slowly varying in time. The amplitude

function is obtained as the solution to the
point kinetics equations; shape function is
to be recomputed at intervals throughout
the transient. Quasistatic methods may tLe
though of as time synthesis with only one
spatial mode. The total flux @ (r, E, ) can
be separated into a product of a “shape”
function and an “amplitude” function
O (r,E0)=¥(r,E,f)N () (3.12)

where ¥ (r,E,f)=shape function

N (¢) =amplitude function; N (0)=1.0

The factorization approach has been the
basis for the onedimensional computer pro-
gram QX-1*% for the “quasistatic treatment
of excursions.” It has teen demonstrated
that the quasistatic solution converges to
the solution obtained by direct numerical
integration for both fast reactor®® and
thermal reactor problems.?,%.#® Although
the accuracy of quasistatic method is adeq-
uate for toth reactor problems, the accuracy
of the method is much better for fast
reactors than for thermal reactors.

Because the quasistatic method was de-
veloped primarily for fast reactor transient
analysis, it has been employed in two
production-oriented two-dimensional multi-
group fast reactor transient analysis codes,
FX2%,40 and KINTIC-1*Y. Some variation
of the cuasistatic method will surely te
utilized in three-dimensional fast reactor
transient analysis code which is to te deve
loped at Argonne Natonal Latora tory®.

Quasistatic method has alco teen proved
to te an ac¢curate and practical tool for ute
in CANDU reactor transient calculations®®.
At present all routine CANDU transient
analyses requiring multidimensional neutromn
kinetics calculations are carried out using
this method*3*,

" 3.4 Ncdal Methcds
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The extension of the modal expansion to
actual reactor is often unsatisfactory because
too many modes are required to describe
the complex configuration in two or three
dimensions. These practical reactor problems
may be solved by applying the nodal method
first proposed by Avery*® for a system of
coupled reactors.

In nodal methods’*® a reactor is divided
into large subregions. A single “node” is
then associated with each of these large
subregions and assigned gross values that
are characteristic of the nuclear properties
of the subregion. The number of spatial
points at which a solution is sought is thus
greatly reduced. The group flux within each
node j is written as the product of a shape
function and an amplitude function,

¢ (%.3,2,t) =¥;(x,9,2) N;(?)
where ¥;(x,5,z) =shape function
N;(¢) =amplitude function.
The nodal approximation is actually a

(3.13)

special case of a modal approximation in
which only a single expansion mode 1s used
in a given region. The mnodes in nodal
approximation are then coupled together by
coupling coefficients and may be treated as
“black boxes” once the coupling coefficients
between them are specified.

The principal difficulty encountered in
using the nodal model is associated with
determining the couling coefficients. The
is that the

coefficients are not constant but rather

essential problem coupling
depend on the flux levels and shapes, both
of the nodes directly coupled and of neigh-
loring nodes. The most successful nodal
echemes*” account for this fact by updating
the coupling coefficients as the calculation
proceeds or by dealing with the currents
between nodes explicitly.

The application of nodal methods has
been primarily to reactors composed of
physically separated cores, such as those
proposed for rocket propulsion or for fast
breeder reactor. Recent investigations®s*®,5»
have demonstrated that the response matrix
technique, which is included among nodal
methods, can significantly reduce the com-
putational effort for solution without loss
of accuracy.

3.5 Coarse-Mesh Metheds

The most obvious stratagem for reducing
the computing time associated with the
multigroup method is to reduce the number
of mesh points. This reduction may be done
simply without modifying the computational
algorithm, or it may be done in conjunction
with a redefinition of the algorithm.

A number of methods have been proposed
for arriving at an algorithm for coarse-mesh
difference equations which is more accurate
than the conventional type of difference
algorithm. A generalization of the finite
difference approximation method by Alcouffe
and Albrecht®® allowed the possibility of
significantly reducing the number of mesh
points necessary to achieve an accurate
solution over that required by the conven-
tional finite difference method. The coarse-
mesh method®?.5®, the principle of which
has been introduced by Birkhofer and We-
rner’®, requires considerably smaller number
of unknowns and consequently less computing
time than the finite difference method at
comparable accuracy.

A second coarse-mesh techique which has
only recently been applied to transient
problems is the well-known finite element
method?®,%®, Kang and Hansen®® first treated
the two-dimensional time-dependent diffusion
equations with this method.

In finite elment methods the spatial flux
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-shape is approximated by piecewise poly-
nomials defined over subregioné of the
‘problem domain, the “finite elements.” Finite
-element methods tend to reduce the number
of spatial points at which the flux must be
calculated for results of a certain degree
of accuracy. The time dependence of the
flux may also be approximated by polyno-
‘mials to increase the time step size. These
methods are amenable to computer analysis
which guarantees convergence; rigorous error
bounds are readily determined. Rohan
others®” designed HERMITE
for use in PWR transient analysis and
extended finite element solution technique

and code

to three-dimensional calculations with proim-
ising results.

4. Summary

Solution methods for the multigroup space-
dependent reactor Kkinetics equation are
divided intot wo broad categories: direct
solution miethods and indirect solution me-
thods such as synthesis,

nodal methods. Direct methods are chara-

quasistatic, .and

cterlzed by fairly definitive error bounds
and thus valuable as numerical standards
agalnst which the more rapid but more
épproximate indirect techniques,‘ can _be
compared. Major shortcoming of the direct
methods is the Iarge storage requirements
dnd long computing time. With the recent
increase in’ computing power, the direct
integration methods, among which alte*na-
ting direction methods are most promlsmg,
are now fea51ble for use in routme productlon

IR NEE

calculations.

- Indirect solution' methods have characte-
ristically small computing time reqmrements
But their nain drawbacks are no ex1stance
of rigorous error bounds and’ strong mﬂuence

‘of the accuracy by the choice of trial
‘functions. Space-time synthesis scheme is

more capable of dealing with protlems of
much greater detail than other indirect

‘methods. Quastatic methods have Eeen used
'in transtent analyses of fast breeder reactors

and heavy water reactors. The response
matrix technique, which is included among
nodal methods,
computational effort and are undergoing

development as an efficient analysis tool.

significantly reduces the

‘Coarse-mesh mothods such as the finite

element method show promise of allowing
‘a reduction in the number of unknowns

‘without loss of accuracy.

A solution technique should be as econo-
mical as possible while still providing a
sufficiently accurate solution. In order to
actomplish this, one should reduce the
numkber of unknowns and/or should minimize
the numbter of times that the unknowns
fnust be determined. The methods which
perrit either a reduction in the number of
unknowns and/or large time step sizes will
deserve further attention.

The day when the three-dimensional
multigroup time-dependent diffusion-theory
treatment of realistic reactor transients can
be routinely used is not far long way in the

future,
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