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Abstract

A new representation for the Dirac equation, which may be appropriate to

describe the interaction of the charged particle with the electric field, is derived

by introducing a gauge-independent unitery transformation. It is shown that in

this representation the effective Hamiltonian without potentials has a new feat-

ure in the non-relativistic limit.
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1. Introduction

The non-relativistic behavior of the spin 4 Dirac
particle was studied by Foldy-Wouthuysen” and
Tani ?. Especially Foldy investigated the proper-
ties of the charged Dirac particle with low mom-
entum when moving through the weak, slowly
varying, external electromagnetic field (classically
describable)®. The extreme relativistic behavior
of the Dirac particle was studied by Cini-Touschek?
and Pac®. Especially Pac investigated in a synthet-
ical fashion the transformation properties of the
Dirac equation in both cases of non-relativistic and
extreme-relativistic limits, in connection with the
internal symmetry properties of interactions®.
Mandelstam studied the gauge-independent and
path-dependent transformation properties of the

* Work supported by the Ministry of Education.

103

Dirac field in interaction with the electromagnetic
field. And he formulated the so-called Mandelstam’s
electrodynamics without potentials®. Following the
Mandelstam’s approach mentioned above, Cabbibo
and Ferrari dealt with the quantum effects of
magnetic monopoles®. Schiff tried to find any
relation between quarks and magnetic monopoles,
in non-relativistic version of the Mandelstam’s
approach by modifying the Cabbibo-Ferrari for-
mulation®.

In the present paper we introduce a new kind
of unitary transformation, which corresponds to a
in the

Mandelstam’s approach, to reformulate the Dirac

counterpart of the Schiff’s formulation

equation with the electromagnetic field in terms of
the physical observables, such as the intensity of
electric field E and the magnetic induction B. It is
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shown that the transformation is gauge-independent
and path-independent in contrast to the Schiff’s case.
Especially we are interested in the electromagnetic
properties of the transformed new scheme in the
non-relativistic limit. For this purpose we transf-
orm the scheme to the classical representation
(the non-relativistic limit) by the Foldy-Wouthuy-
sen version. It is found that the effective Hamilt-
onian in the classical representation of the scheme
takes a new feature in terms retained to order
(i/mc)? relative to the rest energy of the particle.

In the second section, the new representation of
the Dirac equation without potentials is obtained
by introducing the new kind of unitary transfor-
mation. In the third section, the non-relativistic
behavior of the above scheme is discussed, with
the aid of the Foldy-Wouthuysen transformation.
The last section is left for conclusion.

2. New representation for the Dirac equation

The Dirac equation that describes the motion of
a particle with mass m and the charge q in the
potentials A (r, t), ¢ (x, t) is

. o
where
H={a5(e, ) +-Foar (V=LA (1)) +6me?]
2.2)

and the electromagnetic fields are defined by

B=V XA, 2.3)
E=—1- %—w. @. 4)

We now are interested in the case that the inten-
sity of the electric field E of propagation vector
k and frequency o=z |k| is described by
E@t)=E; exp {{(ker—ol)}

+Eotexp {—i(k-r—oit)}, (2.5)
in which Ey is a constant complex vector, normal
to the direction of propagation k. We define a new
field

E(r,t) =S, E@t)dt. 2.6)

Then, from Egs. (2.4) and (2.5) we have

B (r,t) = —%(Boeap {i (kor—at))
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—Eq*exp {—i(k-r—wt)}] @7
and
_cr L WS
B(r,8) = (kXEo) exp{z(k r—ot);
+ (kXEo) exp{—i(k-r—wt‘)}\f
or
Bt =—:«(k><E) (2.8)
where
__ @B
V XE=—r. (2.9)
Thus the magnetic induction B (r, t; can be re-
written as
1
VXE= =, (2.10)

provided that the magnetic induction B vanishes
at infinity in time.
Let us now introduce such a unitary transform-

ation*
U= exp[—gz—g: §(et) dt')

which is path-independent and satisfies the relation

(2.11)

U-1=U +=exp[;—gs: $rt)dt) @.12)

As is well known, the first and second kind of

gauge transformations

TTo= exp[—-%%— 4 (r,t)] , (2. 13y

(2.14)

1 a4

A—>A=A+VA
$>go=¢— 5 }

leave the fields E, E’, B and the form of the wave
equation (2.1) unchanged.
Application of Eq. (2.5) to ¥ gives
U=uT

=Wexp[—i%—g: é (xt) dt’]

Substitution from Egs. (2.13) and (2.14) shows
that

Zﬁ’ell’oexp[—i%g:yio(r,t’) dt’]

(2.15)

* If we define the Mandelstam’s path-dependent and
guage-independent transformation,

M) = exp[;i-f: Ap(x) dxy} ,

where z=(r,t) and Ap=(A,ig), then in the frame dx
=(0,0,0, idt), we get Eq. (2.11).
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=T, exp[— ~S é(x,t) dt’]

Xexp[_ihc at/ dt’]

=7 eap| -] —S sxt) dt')
=17,
provided that the gauge function A vanishes at
infinity in time. Thus the transformed wave fun-
ction ¢’ is gauge-independent as in the case of
Mandelstam’s quantum electrodynamics without
potentials.

Equation (2.11) gives for the derivatives of U

i agt_l =U-igg, (2.16)

=u-l<7‘z—> S,‘ e e e
=y- ( A+ -Lowm), (2.17)

provided that both A(rt) and 4(rf) vanish at
infinity in time.

The wave equation for #” may then be obtained
from Eq. (2.1) with the help of Egs. (2.16) and
2.17):

. o e
e =HW, (2.18)
where
H=UH[J- (2.19)
and in fact
. ch Y
=" (v— 2 E’) +pme?, (2.20)

which is, of course, gauge-independent. Equations
(2.18) and (2.20), without potentials, show that
this new representation may be appropriate to
describe the interaction of the charged Dirac par-
ticle with the electric field as expressed in Egq.
(2.5).

In this representation, we may see that the timme
derivative of (p—q E)
is .

(0= GE) =t p,) U B ) q”“‘
=q [aXB),+qF,,
and then

(p—gE) =¢{E+aXB}, (2.21)
provided that E vanishes at infinity in time.

Equation (2.21) shows that the time derivative

of (p—q¢E) may have the analogue of Lorentz

force.l?

3. Application to the non-relativistic limit

As was demonstrated by Foldy and Wouthuysen?,
of the

particle may be exhibited in a very direct way by

the electromagnetic properties Dirac
transforming the Dirac equation into a new repr-
esentation in which states of positive and negative
energy for the particle are separately represented
by two-component wave functions. So the Foldy-
Wouthuysen representation is paricularly useful
for the discussion of the non-relativistic limit of
the Dirac equation, in connection with the Pauli
representation.

If the Foldy-Wouthuysen transformation is carr-
ied out on Eq. (2.1), the Dirac equation takes the

form
zh——{ﬁmc2+ @=L A)2+g8
._,‘_ﬁg.
+8—%20—2ca-(p--‘g—A)xE—a-E
x @=L A~ vBrr, @)

where & is the gauge-dependent Foldy-Wouthuys-
en representation (the classical representation).

If the same transformation is carried out on Eq.
(2.18), the Dirac equation in our case takes the
form

if —ag—= {ﬁmcz-i— o (p— q Ly — ﬁa-B

+5 8mzc~ fo:(pXE)—c- (EXD)J]
83!7262 VeE+t- } 3.2)

where ¥ is the gauge-independent Foldy-Wouthu-
ysen representation. In Eq. (3.2), the effective
Hamiltonian without potentials is, of course, gauge-

independent. In the derivation of both Egs. (3.1)

2
and (3. 2), we have retained terms to order ( 7”;1%)

relative to the rest energy of the particle.

From the comparison of Eq. (2.2) with Eq. (3.1),
one may recognize the physical significance
of the new terms:

a) The term
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— B (oL B) B+E . 0—-LE),
3.3)
represents the interaction of a point charge q with
the effective electric field E'.
b) The term

s (o (PXE—Exp)J, (3.4)

may be rewritten in the form of

igh? 3B
8m?c2 °  at

with the aid of Eq. (2.9). Equation (3.5) repres-

ents the spin-orbit coupling associated with the

(3.5)

magnetic moment. From Egs. (3.3) and (3.5) we
see that the effective Hamiltonian in our new
representation ¥’ has a new feature and a clear

physical meaning in the non-relativistic limit.

4, Conclusion

The transformation properties of the Dirac equ-
ation with the electromagnetic field have been
discussed from the various points of view. The
gauge-independent and path-independent unitary
transformation has been introduced. And it has
been found that the application of this transform-
ation to the Dirac equation with the electromag-
netic field is very useful to shed respectively a
light on the scheme without potentials and the

non-relativistic limit of the scheme. Especially it
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is stressed that the transformed Dirac Hamilton-
ian is of importance for contemplating the elect-
romagnetic properties of the Dirac particle in
terms of observables, such as the intensity of
electric field E and the magnetic induction B.

Moreover, in the non-relativistic limit, it is of
interest to investigate the behavior of the new
transformed scheme. It is to be noted that the
effective Hamiltonian of the scheme in the class-

ical approximation has an interesting feature.
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